
A Study on Monte-Carlo Biochemical Simulation
for Field-Programmable Gate Arrays

Masato Yoshimi

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

School of Science for Open and Environmental Systems
Graduate School of Science and Technology

Keio University

March 2009

Preface

Since 1970s, many biologists and computer scientists have been studying various approach method-
ologies to simulate chain chemical reactions inside living cells using computers. These studies were
supported by rapid progress of computer performance and operational cost. Stochastic simulation
method has become increasingly important for various study fields in the systems biology, which
is a strategic research area that aims to analyze life processes as a system through simulations of
biochemical models. Life processes often exhibit stochastic phenomena. Stochastic Biochemical
Simulation Algorithm, which is abbreviated as SSA, is a method to calculate time changes of molec-
ular numbers in a stochastic biochemical model. SSA requires vast number of repetitive computation,
because it originates in a Monte-Carlo simulation methodology. Therefore, various algorithms have
been developed to reduce the amount of calculation, and there are all many ongoing studies on the
development of new computer system to achieve high-throughput.

Since 2000s, the baseline performance improvement procedure for microprocessor evolved from
acceleration with high operational frequency to parallel operation using multi-core processor. Under
such circumstance, a new type of computational systems is being focused for allocating a part of
scientific operations to dedicated hardware in order to achieve both low-cost and high-performance.
For example, Graphical Processing Units (GPUs) and other many-core processors in equipped in
large-scale PC-clusters for the aim of reducing operational cost. Especially, a Field Programmable
Gate Array is anticipated as an alternative for small- to middle-class PC-clusters with less than dozens
of PCs, and various researches are now in progress. Dedicated systems with FPGAs allow high-
speed or high-throughput computation by well-scheduled dataflow that fills up arithmetic pipelines
solving the algorithm. However, just like other dedicated hardware, high-performance is achieved
with FPGAs when algorithms have high loop-level parallelism, and conditional branches in the loop
may degrade performance drastically. Performance improvement obtained by use of an FPGA greatly
varies by the characteristics of target algorithm, because FPGAs have strict limitation of data size,
dataflow and parallelism to achieve high throughput.

This work studies implementation and evaluation of two different SSAs on an FPGA, which aims
to achieve high-performance compared to execution on microprocessors. The goal of this work is to
clarify the relationship between algorithm, hardware architecture, and performance according to data
size based on the evaluation results.

First SSA is called First Reaction Method (FRM). Processes in the algorithm is simple, and has
high degree of loop- and data-level parallelism. Thus, the hardware design was fixed, and data flow
was statically scheduled to enhance performance by consecutively injecting data into deep pipelines
of floating point units. Arithmetic operations were configured faithfully to the original algorithm by
single-precision floating-point data. We validated that the implemented hardware can treat small-
scale models well. The design achieved more than 80-fold throughput compared to software execu-
tion on Xeon 2.80 GHz, with large-scale biochemical systems for up to 1023 reactions.

Second SSA is called Next Reaction Method (NRM). The algorithm adopts two distinctive data
structures: a binary tree in an Indexed Priority Que (IPQ) and a Dependency Graph (DG). They
are used for improving computational efficiency over FRM for large-scale models, but processing

Preface ii

time dynamically varies because of the nature of their data structures. Main concept of the design
for executing NRM was to allow multi-thread execution. However, since it is highly difficult to
achieve high throughput by naively exploiting data-level parallelism, the design adopted a data-driven
methodology. The modules in implemented hardware are linked with an interconnection network.
By modifying the network among modules, hardware design can be flexibly tuned to perform well on
the target FPGA device. We found that the bus-based interconnection network achieves reasonable
performance. It was evaluated with different number of threads, and through the result analysis we
studied a methodology to reduce waiting time. The design achieved approximately 4.2 to 5.4 times
higher throughput compared to execution on Core 2 Quad Q6600 2.40GHz.

And finally, the performance of two implementations for various size of biochemical model is
discussed to lead to future development of scientific application using FPGAs.

Acknowledgments

I would like to thank all the people who supported me to accomplish this thesis.

First and foremost, I would like to express my deepest gratitude to my supervisor, Professor
Hideharu Amano for providing me this precious study opportunity since I was a bachelor student
in his laboratory. He has always given me many beneficial advices and suggestions which were
the stimulus to pursue my research. His great experience guided me to enlarge my knowledge on
computer architecture fields.

I would like to thank all of my doctoral committee members, Professor Kotaro Oka, Associate
Professor Michita Imai, and Associate Professor Hiroaki Saito for their careful reviews and com-
ments to my thesis. I also would like to thank Professor Yoshikazu Yamamoto and Associate Profes-
sor Nobuyuki Yamasaki for their keen technical comments on this work.

This work is supported by countless researchers around the world.

First of all, I received generous support from members of our research group. I especially
would like to appreciate my seniors, Dr. Akira Funahashi (Keio University) and Associate Profes-
sor Yuichiro Shibata (Nagasaki University). I also thank to members of Shibata Laboratory, Naoki
Iwanaga, Hideki Yamada and Tomoya Ishimori, and our common co-researchers, Dr. Noriko Hiroi
and Dr. Hiroaki Kitano.

I would like to thank Dr. Yasunori Osana (Seikei University). He is my trailblazer as a researcher
in cross-disciplinary studies.

I am grateful to Yuri Nishikawa for her careful English support and vivid inspirations. Discus-
sions with her on multi- and many-core processing hardware have been beneficial for this work.

I also thank to members of our research group (BIO and ASAP), Tomonori Fukushima (Toshiba
Semiconductor Company), Shizuto Fukuda (SCEI), Yow Iwaoka (HITACHI), Toshinori Kojima
(Panasonic), Hirokazu Morishita and Akihiro -Vegeta- Shitara. I received daily inspirations and
encouragements from the profitable discussions with them.

I owe my deep thanks to assistant Professor Michihiro Koibuchi (National Institute of Informat-
ics) provided me with many insightful technical discussions and comments.

I would like to appreciate my seniors, Dr. Akira -Yomi- Tsuji (NEC), Dr. Ko-nosuke Watanabe,
Dr. Tomohiro -Terry- Otsuka, and member of PDARCH, Tomotaka -Amuro- Miyashiro (Sony). I
also thank to Dr. Yasuki -Chuckey- Tanabe, Yoshinori Adachi (Toshiba Semiconductor Company),
Dr. Satoshi -TSUTSU- Tsutsumi (HITACHI) and Dr. Yohei -GWA- Hasegawa (Toshiba).

Acknowledgments iv

I would like to extend many thanks to my colleagues: especially Dr. Hiroki Matsutani and Dr.
Wang Daihan. I also greatly thank Dr. Vasutan Tunbunheng for sharing pleasures and sorrows with
me as research associates of GCOE program. I wish to thank all the members of Amano Laboratory
for their daily supports during my laboratory life.

I also wish to thank all the members of Anzai-Imai Laboratory and Yamasaki Laboratory, espe-
cially Kenta Ishii, Satoru Satake and Hirotaka Osawa.

A part of this research was supported by Japan Society for the Promotion of Science (JSPS) for
the research fellowship (DC1). The project was also supported by Grant Number R01EB007511
from the National Institute Of Biomedical Imaging And Bioengineering. I would like to thank VLSI
Design and Education Center (VDEC), the University of Tokyo for providing CAD tool supports.
The CAD tools which are used in this work have been supported by VDEC in collaboration with
Synopsys, Inc., Cadence Design Systems, Inc., and Mentor Graphics, Inc.

Finally, I am grateful to three women in my family. First of all, I could not sustain this re-
search without my grandmother Eiko Kawakami’s unselfish willingness to provide me with visible
and invisible support. My senior sister Chisato Yoshimi supported and encouraged me to make im-
provements of my unsound and uncertain life.

This thesis is a tribute to my mother, Setsuko Yoshimi, who passed away in 2007. I hereby pledge
to her that I will be a passionate educator and a genuine researcher to follow in her footsteps.

Masato Yoshimi

Yokohama, Japan
AM 02:23 13th February 2009

Contents

Preface i

Acknowledgments iii

Abbreviations and Acronyms xi

1 Introduction 1
1.1 Motivation. 1
1.2 Objective and Contribution. 2
1.3 Thesis Organization. 2

2 Stochastic Biochemical Simulation 4
2.1 Overview . 4
2.2 Systems Biology . 4
2.3 Stochastic Biochemical Simulation Algorithm. 5

2.3.1 Overview . 5
2.3.2 Stochastic biochemical model. 6
2.3.3 Common variables and operations in SSAs. 9
2.3.4 FRM: First Reaction Method. 10
2.3.5 DM: Direct Method. 10
2.3.6 NRM: Next Reaction Method. 11
2.3.7 Summarize of exact SSAs. 14
2.3.8 ODM: Optimized Direct Method. 14
2.3.9 τ-leaping Method. 15

2.4 Applications. .16
2.4.1 Overview .16
2.4.2 STOCKS .16
2.4.3 STOCHSIM .17
2.4.4 E-Cell version 3 . 20
2.4.5 STOCHKIT. .21

3 Systems using Field Programmable Gate Arrays 22
3.1 Architecture of an FPGA. 22
3.2 General architecture of Xilinx Virtex-II FPGA. 23

3.2.1 Architecture of CLBs. 23
3.2.2 The overview of Virtex-II FPGA. 24

3.3 Applications in molecular dynamics. 24
3.3.1 Advantages of FPGA-based architectures. 24
3.3.2 PROGRAPE-3 (Riken/Tokyo Electron Device). 25
3.3.3 Molecular dynamics simulation. 25

Contents vi

3.4 Related works : Stochastic Biochemical Simulator on an FPGA. 25
3.4.1 Overview .25
3.4.2 Keane’s approach. 26
3.4.3 Thurmon’s implementation. 27

3.5 Our previous work .28
3.5.1 Analysis of Lotka System. 29
3.5.2 Overview of the Simulator. 30
3.5.3 Simulator Module and Reactor Module. 30
3.5.4 Output Control Module. 32
3.5.5 Evaluation .32

4 Implementation of First Reaction Method on an FPGA 35
4.1 Design concept to solve previous problems. 35

4.1.1 Floating-point arithmetic. 35
4.1.2 Scalability for large-scale biochemical models. 35
4.1.3 Multi-thread execution. 35

4.2 Acceleration concept for FRM-FPGA. 36
4.3 Implementation. .37

4.3.1 A structure of FRM-FPGA. 37
4.3.2 CU: Controller Unit . 38
4.3.3 DU: Data Unit .39
4.3.4 FU: Functional Unit . 40
4.3.5 Floating-point arithmetic unit. 42
4.3.6 Computational time for a reaction cycle on FRM-UNIT. 43

4.4 Evaluation. .43
4.4.1 Result of resource utilization. 43
4.4.2 Performance evaluation. 43

4.5 Chapter summary. .45

5 Implementation of Next Reaction Method on an FPGA 46
5.1 Design of NRM on an FPGA. 46

5.1.1 Analysis of NRM. 46
5.1.2 Analysis of NRM execution unit using an FPGA. 47

5.2 Implementation of NRM execution system. 49
5.2.1 Data transfer protocol between modules. 49
5.2.2 Structure of thread modules. 49
5.2.3 Principles of thread modules. 50
5.2.4 Principles of shared modules. 52
5.2.5 Principles of interconnections. 53
5.2.6 Organization of NRM execution system. 53

5.3 Evaluation. .54
5.3.1 Module area .54
5.3.2 Area of NRM execution system. 55
5.3.3 Performance evaluation. 56
5.3.4 Throughput. .57

5.4 Review .59
5.5 Chapter summary. .60

Contents vii

6 Conclusion 61
6.1 Summary .61
6.2 Outlook for the future. .62

Bibliography 63

Publications 66

A Implementation of the floating-point logarithmic function module 71
A.1 Floating point format .71
A.2 Logarithmic function module. 72

B Derivation of Stochastic Biochemical Simulation Algorithm 77
B.1 Methods for biochemical simulation. 77
B.2 Solution for an analytical model. 77
B.3 Formulation of chemical reactions with stochastic models. 78
B.4 Direct Method. .83
B.5 Advantages and limits of stochastic method. 84
B.6 Lotka system .85

List of Tables

2.1 Reactions in Lotka system. 7
2.2 Initial parameters in Lotka system. 8
2.3 Propensity Function : Equations to calculate propensity. 9
2.4 Operations for IPQ. .12
2.5 Features of FRM, DM and NRM. 14
2.6 Execution time for LCS and TIS on 1.4GHz Pentium 4. 15

3.1 Performance of Keane’s system compared with the NRM on a 2.0GHz Pentium 4. . 27
3.2 Performance of Thurmon’s system compared to a 1.0GHz Pentium III. 29
3.3 Resource Utilization .33
3.4 Performance. .33
3.5 Throughput of the Software. 34

4.1 Variables in List.4.1 .36
4.2 Logic resouces and maximum operating frequencies for FP arithmetic. 42
4.3 Resource Utilization .44

5.1 Execution environment for C++ program code. 46
5.2 Area and operating frequency of each module. 55
5.3 Operation frequency of NRM execution system. 56

List of Figures

1.1 Thesis organization. 3

2.1 Iterative process of model building. 5
2.2 Reaction cycle in SSA. 6
2.3 Execution result for Lotka system(A) with random seedA 6
2.4 Execution result for Lotka system(A) with random seedB 6
2.5 Execution result for Lotka system(B) with random seedA 7
2.6 Execution result for Lotka system(B) with random seedB 7
2.7 A structure for Indexed Priority Queue. 11
2.8 A structure for Dependency Graph. 12
2.9 Flowchart of NRM .13
2.10 A simulation model of E-Cell version 3. 20
2.11 Algorithms in STOCHKIT . 21

3.1 Architecture of Island-style FPGA. 23
3.2 Architecture of a CLB of Virtex-II FPGA . 24
3.3 Architecture of Virtex-II FPGA. 25
3.4 Architecture of PROGRAPE-3 (Bioler-3). 26
3.5 Cascade model evalulated in Keane’s system. 27
3.6 Thurmon’s hardware design. 28
3.7 Structure of the Lotka System Module. 30
3.8 Data-flows in Reactor Module. 31
3.9 Structure of Output Control Module. 32
3.10 Example of a result. .33
3.11 Example of another result. 33
3.12 Execution by C Code. .34
3.13 Execution on Hardware. .34

4.1 Pipeline execution of List.4.1 . 37
4.2 Structure of FRM-FPGA. 38
4.3 An example of pipeline execution. 39
4.4 Block diagram of Controller Unit. 39
4.5 Block diagram of Data Unit. 40
4.6 Structure ofτ-unit .41
4.7 Structure ofµ-unit .42
4.8 Average populations on FRM-UNIT. 44
4.9 Average populations on FRM-SW. 44
4.10 Throughput gain. .45
4.11 Gain ratio .45

List of Figures x

5.1 Calculation time and its breakout for the Lotka model in NRM. 47
5.2 Profiles for HSR model in NRM-SW. 48
5.3 Number of function call in NRM. 49
5.4 Module connection diagram in NRM execution system. 50
5.5 Structure of the threaded module. 51
5.6 State transition in the packet controller and send/receive packet in a reaction cycle. . 51
5.7 Structure of shared module U2 (Dependency Graph) with a set of I/O port 52
5.8 Structure of shared module U4 (calculatesτ) with two sets of I/O port 53
5.9 Examples of 4-port interconnection modules. 54
5.10 Structure of NRM execution system with 4 threaded modules. 55
5.11 Resource utilization of NRM execution system. 56
5.12 Average clock cycles to calculate a reaction cycle. 57
5.13 Average waiting time to transfer for each packet. 57
5.14 Operation rate for each functional core (unit: %). 58
5.15 Comparison for throughput (unit: Mcycles/sec) . 58
5.16 Throughput of descripted hardware (unit: Mcycles/sec) 59

A.1 Format of a single-precision floating point. 71
A.2 Linear interpolation. .72
A.3 Operation flow of logarithmic function with linear interpolation. 73
A.4 Error in linear interpolation(32 line segments). 74
A.5 Error in linear interpolation(64 line segments). 74
A.6 Approximated curve in a line segment of linear interpolation. 74
A.7 Block diagram of logarithmic function with second-order interpolation. 75
A.8 Error in second-order interpolation(32 line segments). 76

B.1 Collision of molecules .78
B.2 Collision volume∆Vcoll .79
B.3 Assumed reaction. .80
B.4 Computation flow of Direct Method. 84

Abbreviations and Acronyms

E.coli Escherichia coli
ASIC Application Specific Integrated Circuit
DG Dependency Graph
DM Direct Method
DNA Deoxyribonucleic Acid
FPGA Field-Programmable Gate Array
FRM First Reaction Method
HSR Heat-Shock Response
IPQ Indexed Priority Queue
LCS Lenear Chain System
NRM Next Reaction Method
ODE Ordinary Differential Equations
ODM Optimized Direct Method
ReCSiP Reconfigurable Cell Simulation Platform
SBML Systems Biology Markup Language
SSA Stochastic Biochemical Simulation Algorithm
STOCHKIT Stochastic Simulation Kit
STOCKS STOChastic Kinetic Simulation
TIS Totally Independent System

Chapter 1

Introduction

1.1 Motivation

Since 1970s, there have been numerous attempts to replicate a sequence of chemical reactions using
computers. It motivated various studies to calculate time-evolution of biochemical models which
involve different types of chemical species reacting in a different form.

With rapid performance improvement and cost-reduction of computers, biologists acquired an
easy access to computational resources in order to process of quantitative data gathered from experi-
ment such as genome sequence of various life activities and metabolizing systems in a cell.

In 2000s, the Systems Biology became an active area of research as an interdisciplinary region of
biology and computer science. Its aim is to create mathematical models of biochemical phenomena,
which would encourage and stimulate the systematical understanding to them. Further advance of the
study is anticipated by establishment of standardized environments and languages for computational
modeling of biochemical systems, such as SBML [1]. Biochemical experiments not only require
time and expense, but also involve ethical concerns. Therefore, biochemical simulation environment
is both a necessity and challenge to biochemical researchers.

Varieties of software-based biochemical simulators have been exploited during the past few
decades: from small-scale kinetic simulators such KINSIM [2] and GEPASI [3], to whole-cell sim-
ulators represented by E-CELL [4] and The Virtual Cell [5, 6, 7]. They allow users to explore the
dynamics of the system by tracing trajectories of the metabolite concentrations in time-series, and
also to generate a sequence of simulations with different combinations of kinetic parameters to seek
for optimal sets of experimental results.

While traditional ordinary-differential equation (ODE) based simulation mentioned above is
used for metabolic simulations, stochastic modeling technique for chemical reactions was devel-
oped by Gillespie in 1976 [8]. It is called Stochastic biochemical Simulation Algorithm (which is
abbreviated as SSA), and various improvements on the algorithm are being studied. From the late
1990s, software-based simulators applying stochastic approach have been developed. For example,
STOCKS [9] simulates cell growth and its division, and STOCHSIM [10] can deal with the confor-
mational change of molecules.

However software-based simulators show serious performance limitations, for their platform be-
ing general microprocessors. For example, parameter estimation is a task with serious calculation
cost that even a parallel system of high-throughput microprocessors such as PC/WS clusters and grid
computers have deficiency in their performance at the present day. Performance of these computa-
tional resources may be also degraded as the scale of analysis objects increase, for intensive commu-
nication and synchronization due to parallel dependencies across species that commit to numerous
reactions in the model. Moreover, as stochastic biochemical simulation is a kind of Monte-Carlo
method, it requires vast time of circulation of a simulation trial to get the statistically-significant

1. Introduction
1.2. Objective and Contribution 2

number of result. While studies for both algorithm and simulation environment make advance in
acceleration simulation, other acceleration techniques are also desired.

Defects of large-scale computational resources do not only lie in performance. They are also
unrealistic for individual biologists to obtain in terms of their system size, cost, and power con-
sumption. Dedicated hardware utilizing ASIC is a possible solution for achieving high-throughput
with small hardware size, but it is also accompanied with extremely high development cost and poor
capability toward variousness of biochemical reactions. Although it is difficult to accommodate its
progressively and flexibility by dedicated hardware, biochemical simulation involves various levels
of high parallelism. While reconfigurable systems such as FPGA can process by hardware operation
directly, its hardware module is loaded by other modules generated for the target algorithm. Another
advantage is an initial cost. As dedicated hardware used in scientific application is not produced
in large amount, FPGA may be a reasonable solution to solve such problems. Especially, SSA is a
challenging application to accelerate by specific hardware like FPGA and other multi- or many-core
hardware.

Against such background, our research group has focused on a development of an FPGA-based
biochemical simulator called ReCSiP [11, 12, 13]. In this thesis, stochastic biochemical simulators
are implemented and evaluated. The main objective of this study is to show that the performance
of FPGA obtains some-fold higher performance compared to recent microprocessors. Additionally,
approaches to solve previous problems by exploiting parallelism are discussed based on quantitative
evaluation results.

1.2 Objective and Contribution

In this thesis, two types of hardware for stochastic biochemical simulation are implemented and eval-
uated. The preliminary goals of implemented hardware are that: (1) performance should outperform
severalfold throughput compared to the execution on recent microprocessor for simulation of practi-
cal stochastic biochemical model, (2) they improve performance of related works by other research
group and our previous works. Even though their implementation achieved high performance, they
expressed several problems that made them off from practical use.

Representative requirements for simulator hardware module are as follows:

1. It runs exact same algorithm with original SSAs using floating-point arithmetics,

2. It has a capability to simulate large scale biochemical model,

3. It exploits effective utilization for logic resource in FPGA.

To attend these requirements, two SSAs, First Reaction Method (FRM) and Next Reaction
Method (NRM), are implemented and evaluated on an FPGA. Both of them have various levels
of parallelism, and they are exploited on hardware modules. In processes in the algorithm is simple,
and has high degree of loop- and data-level parallelism. On the other hand, NRM adopts two distinc-
tive data structures: a binary tree in an Indexed Priority Que (IPQ) and a Dependency Graph (DG) to
reduce time complexity of FRM. In the case of NRM, thread-level parallelism is only a potential to
improve throughput.

1.3 Thesis Organization

This thesis organization is illustrated in Fig.1.1. Chapter2 of this thesis explains a fundamental
stochastic modeling technique of chemical reacting systems, simulation algorithms, and actual soft-
ware simulators. Chapter3 describes the structure of an FPGA, reconfigurable systems for scientific

1. Introduction
1.3. Thesis Organization 3

Chapter 1

Introduction

Motivation
Objective and Contribution
Thesis Organization

Chapter 2

Stochastic Biochemical Simulation

Systems Biology
Stochastic biochemical Simulation Algorithms
Applications

Chapter 3

Field Programmable Gate Arrays

Architecture of an FPGA
Applicatons for bioinformatics
Stochastic Biochemical Simulators on an FPGA
Our previous work

Chapter 4

Implementation of First Reaction Method
on FPGA

Design Concept
Implementation
Evaluation
Chapter Summary

Chapter 5

Implementation of Next Reaction Method
on FPGA

Design Concept
Implementation
Evaluation
Chapter SummaryChapter 6

Conclusion

Fig. 1.1: Thesis organization

computing, recent applications for FPGA-based stochastic biochemical simulation as related work,
and our previous work which suggests motivation and objective of this thesis. Chapter4 describes
the implementation and evaluation of FPGA-based stochastic biochemical simulator by First Reac-
tion Method, followed by thorough discussion of its limitations and problems. Chapter5 shows the
implementation and evaluation of it by Next Reaction Method. Finally, Chapter6 concludes this
work.

Chapter 2

Stochastic Biochemical Simulation

2.1 Overview

Stochastic approach for biochemical simulation was originally proposed by Gillespie in 1976[8],
which is a modeling technique for chemical reaction in well-stirred spaces. Gillespie modeled chem-
ical reacting system as a list of reactions and chemical species, and presented a type of Monte-Carlo
simulation algorithm to depict the time-evolution of populations with some example models. Al-
though the simulation algorithm can calculate exact behavior that obeys to the definition of the model,
it was limited to simulation of small scale models because it requires vast calculation time to acquire
statistically-significant amount of simulation result. SSA has conventionally been intended for small
scale biochemical models, now there are attempts to make various modifications to its simulation
algorithms to accelerate and enable simulations for large scale models.

According to the fast progress of performance and cost reduction of computer, the stochastic ap-
proach has been received attention from around 2000. Since then, many researchers have developed
various SSA to improve computation efficiency and to introduce specific features.

In this chapter, the System Biology which is an emerging academic field between biology and
computer science is introduced in Section2.2. Section2.3explains the calculation scheme of various
SSAs which have been developed. This section describes the definition of the biochemical model
and a recent developing stochastic algorithm fusing ODE-based approaches. Section2.4 introduces
software biochemical simulators which includes SSA-based simulator and uses SSA as a part of a
simulation.

2.2 Systems Biology

Systems biology is an emerging academic field that aims at integrating information of different levels
to understand the structures and dynamics of biological systems, which hopes to develop an under-
standable model of various life phenomena. Its main concept is the integrative study of complex
network structures of life phenomena described in reaction mechanisms, such as gene regulatory
networks, metabolic cycles, and organizations of inter-cellular signaling.

Since the discovery of double-helix structure of DNA by Watson and Crick in 1953 [14], a rise of
molecular biology has laid a conception to regard living systems as molecular machines consisting
of protein substances and nucleic acids, which successfully generated information about allosteric
structures and functions of genes and proteins. However, conventional biological methodologies
were capable of obtaining merely simple properties of individual components in cells. For integrative
understanding of a cellular system, it is required to perform analyses and experiments of its dynamics
based on collection of experimental data. This approach involves the iterative formulation of testable
hypotheses, experiments, and refinement of the biochemical models based on these data.

2. Stochastic Biochemical Simulation
2.3. Stochastic Biochemical Simulation Algorithm 5

Prediction

Validation
 &
Refinement

Validation
&

Refinement

Computational
Simulation

Biochemical
ExperimentHypothesis

Modeling

in silico
characteristics

in vivo and in vitro
characteristics

Fig. 2.1: Iterative process of model building

This iterative process draws two feedback loops: one is the conventional loop based on biochem-
ical experiments (Fig.2.1), and the other incorporates computational experiments, that is,in silico
modeling and simulation. There are diverse fields where computer modeling and simulation are used,
as in analysis of metabolic cycles described in ordinary differential functions and/or stochastic mod-
els, genetic regulation network written in Bayesian networks and Petri Nets. What is stated above all
requires high-throughput computing systems for their huge problem sizes.

2.3 Stochastic Biochemical Simulation Algorithm

2.3.1 Overview

The theoretical derivation of stochastic biochemical simulation and a summary of recent various
algorithms are introduced by Gillespie [15].

Stochastic simulation of chemical reaction proceeds in a unit of computation called “reaction
cycle” as shown in Fig.2.2. A reaction cycle is a process to (1) determine one reaction which is
going to occur next and (2) update the state of the model.

The process of stochastic biochemical simulation includes vast amount of reaction cycle while
each reaction cycle is consist of more simple arithmetic. Examples of simulation result which were
reported by researchers indicates that a simulation has to circulate at least 105 reaction cycles. Es-
pecially, the HSR model in STOCHKIT which will be introduced later needs to simulate for more
than 232 reaction cycles. In general, thousands of simulation are required to statically analyze the
behavior of the model.

In Section2.3.1, a basis of a stochastic biochemical model which is the simulation target is
explained. Scientists proposed various biochemical models with their simulation algorithm. After
the explanation of some models which are used in the evaluation in this thesis, typical SSAs which
have been proposed are introduced. And finally, four famous software simulators are introduced.
Derivations of SSA and biochemical models are described in AppendixB.

2. Stochastic Biochemical Simulation
2.3. Stochastic Biochemical Simulation Algorithm 6

Selecting Reaction
Occured Reaction
Time to occurence

µR

µτ

Updating State

ti+1t i + µτ
Xi+1X i+ µνReaction

Cycle

Fig. 2.2: Reaction cycle in SSA

Fig. 2.3: Execution result for Lotka system(A)
with random seedA

Fig. 2.4: Execution result for Lotka system(A)
with random seedB

2.3.2 Stochastic biochemical model

(1) Definition and baseline of a biochemical model

A stochastic biochemical model consists of the list of reactions which is expressed in Eq.2.1 as an
example.

SA + SB
c−→ SC + SD (2.1)

Sx is a molecules, genes or other chemical species in the model.Xx is called “population”,
the actual number ofSx in the model. The couple of the list of all populationX and simulation
time t is a “state” of the model. The reaction in Eq.2.1 is occurred when speciesSA collides with
speciesSB, where the probability of occurrence of reactionc is given as “stochastic reaction rate
constant”. Species in the left-hand side of Eq.2.1 is called “reactants”, which causes the reaction.
On the other hand, the right-hand side of Eq.2.1 is called “products”, which are generated by the
result of the reaction. After the occurrence of the reaction, populations of reactants are decreased
while population of products are increased. The reactants species are one or two, while the number
of products is undecided. A reaction which includes only one reactants is called monomolecular
reaction, and a reaction by two reactants is called bimolecular reaction.

Space complexity of most SSAs isO(M), and the time complexity is up toO(M), whereM is
the number of reaction defined in the simulation target model. As memory space is not required
large for SSA, few dozens of kilo byte, studies for developing variant of SSA are entirely focused on
the improvement of time complexity and throughput. As memory space of hardware accelerators is
much limited compared to PCs, study for improvement of complexity is vital.

2. Stochastic Biochemical Simulation
2.3. Stochastic Biochemical Simulation Algorithm 7

Fig. 2.5: Execution result for Lotka system(B)
with random seedA

Fig. 2.6: Execution result for Lotka system(B)
with random seedB

(2) Lotka system

Gillespie described following four biochemical models: Irreversible isomerization, Lotka system,
Blusselator and Oregonator, as examples of suitable models to be simulated with SSAs [16]. As
Lotka system depicts easy-to-follow trajectories of molecular number throughout the time evolution,
this thesis would focus on this model as an example of stochastic biochemical model.

Lotka system developed by Volterra is a mathematical model of simple predator-prey relationship
in the ecological system. Gillespie examined the theory for stochastic biochemical simulation using
the stochastic form of Lotka system, which was a relatively small model that consists of four reactions
by four molecular species. Table2.1shows the list of reactions of Lotka system in a stochastic form.

If speciesS1 is assumed that its population would not decrease byR1, populations ofS2 and
S3, which areX2 and X3, would oscillate around 1000, as shown in Fig.2.3 and Fig.2.4. These
simulations begin from the initial state and parameters are summarized in Table2.2. Fig. 2.3 and
Fig. 2.4are results of simulating 2× 105 reaction cycles, because they do not attain the state which
does not occur any reaction in the model. It means that the Lotka system with Table2.2 is a steady
state, populations ofX2 andX3 oscillate around the 1000.

On the other hand, Fig.2.5 and Fig.2.6 show trajectories ofS2 andS3 when the population of
S1 is decreased by occurrence ofR1. Same random seeds were used for Fig.2.3 and Fig.2.4, but
only the assumption aboutS1 differs. The difference between Fig.2.5and Fig.2.6 is only a value of
random seed. These simulations are executed until no more reaction occurs in the model or when it
reaches equilibrium. Simulations are ended when no more reaction occurs next.

Table 2.1: Reactions in Lotka system

Reaction ID Reactants Products

R1 S1 + S2
c1−→ S2 + S2

R2 S2 + S3
c2−→ S3 + S3

R3 S2
c3−→ S4

R4 S3
c4−→ S4

2. Stochastic Biochemical Simulation
2.3. Stochastic Biochemical Simulation Algorithm 8

(3) HSR : Heat-Shock Response

The Heat Shock Response model (which is abbreviated to HSR model) is based on results obtained
in wet experiments. It models the mechanism of how the bacteriaEscherichia coli(E.coli) responds
to a temperature increases. When temperature is increased high enough to unhold the proteins in the
cell, theE.coli displays complex behavior for protection. One of this behavior is that the heat shock
sigma factorσ32 is generated very rapidly. According to rise in temperature, freeσ32 molecule begin
to bind to RNA polymerase (RNAP), and complexσ32 is generated by the reaction. RNAP begins
the transcription of genes which encode a variety of chaperon enzymes. These chaperons take to
refold or degrade unfolded proteins. Meanwhile, producedσ32 molecules are much more likely kept
away by DNAK, which is one of chaperon enzymes.

HSR model is described both ODE-based deterministic model [17] and stochastic form of the
model. Caoet. al.used a stochastic version of HSR model in which 61 types of reactions are defined
by 28 species.

HSR is a typical model used for the analysis and evaluation of SSAs. Besides Cao’s work men-
tioned in Section2.3.8, Li adopted HSR as a test model for running on STOCHKIT [18].

(4) LCS: Linear Chain System

The Linear Chain System (LCS) is a hypothetical model used by Caoet. al. in evaluation of their
proposed SSA [19]. The model containsM chain reactions withM + 1 species as Eq.2.2.

S1→ S2→ · · ·SM (2.2)

All reactions of LCS have uniform propensity function,a j(X) = cXi , wherec = 1.0. The initial
state isX = (10000, 0, · · · , 0). Although Cao used LCS withM = 600 and the final simulation time
T = 30, the number of reaction for LCS can be expanded to examine the scalability of SSA. In this
thesis, we use LCS to examine performance of SSA with variousM.

(5) TIS: Totally Independent System

The Totally Independent System (TIS) is also a hypothetical model used by Cao [19]. This model
containsM independent decaying processes as follows:

Si → ϕ (i = 1, · · · ,M) (2.3)

TIS is possibly the most loose and the simplest model. As same as LCS, Caoet. al. used TIS
with M = 600. The propensity functions in TIS are same witha j(X) = cXi , wherec = 1.0. The
initial state is stored asX = (1000,1000, · · · ,1000).

In this thesis, we also use TIS to examine performance of SSA with variousM.

Table 2.2: Initial parameters in Lotka system

Initial Number Stochastic Reaction
i of Si (which isXi) Rate Constantki

1 100000 0.0002
2 1000 0.01
3 1000 10.0
4 0 10.0

2. Stochastic Biochemical Simulation
2.3. Stochastic Biochemical Simulation Algorithm 9

Table 2.3: Propensity Function : Equations to calculate propensity

Reaction Reactants From Calculation Scheme
R1 Sa c1 × Xa

R2 Sa + Sa c2 × Xa × (Xa − 1)÷ 2
R3 Sa + Sb c3 × Xa × Xb

2.3.3 Common variables and operations in SSAs

Section2.3.3explains the definition of variables and operation which are commonly used in all of
SSAs.

(1) Propensity

Propensity, a likelihood of reaction occurrence, is a very important parameter to determine the next
reaction.

Table2.3 shows schemes to calculate propensity depending on the forms of reactants. A reac-
tion with a reactant likeR1 in Table2.3 is called a monomolecular reaction, and a reaction within
two reactants asR2 andR3 is called bimolecular reaction. Propensities for all reactions defined in the
biochemical model is introduced according to the scheme of Table2.3. It is said that propensity is ob-
tained by multiplying the combination of reactants population, and its stochastic rate constant which
is introduced in AppendixB. Propensity has to be recalculated when the number of the reactants
population is updated.

(2) State-update vector

Each reaction defined in stochastic biochemical model has “state-update vector”ν j as shown in
Eq. 2.4. The vector consists ofM elements which increases and decreases population the reaction
occurred.

ν j = {v1, · · · vM} (2.4)

After the selection of a reaction, the state of the model is updated by adding state-update vector
of occurred reactionνµ to the state of current model, as shown in Eq.2.5.

Xi+1←Xi + νµ (2.5)

State-update vector for each reaction is easily generated by form of the reaction. After all el-
ements are set as 0, elements correspond to reactants are decreased and elements correspond to
products are increased.

For example, state-update vectors of reactions in Lotka system are shown in Eq.2.6-Eq.2.9.

ν1 = {−1, 1, 0, 0} (2.6)

ν2 = {0,−1, 1, 0} (2.7)

ν3 = {0,−1, 0, 1} (2.8)

ν4 = {0,0,−1, 1} (2.9)

(3) Handling simulation and termination condition

Although not strictly defined, following three conditions are substantial terminal conditions of SSAs:

1. Reaching certain pre-defined number of reaction cycle

2. Stochastic Biochemical Simulation
2.3. Stochastic Biochemical Simulation Algorithm 10

2. Reaching certain pre-defined simulation time

3. Reaching certain state of the model satisfies a specific condition

2.3.4 FRM: First Reaction Method

First Reaction Method[8, 16], which is abbreviated as FRM, is one of an original SSA proposed by
Gillespie in 1976. The computational procedure of FRM is as follows:

STEP1 Set initial populations of all speciesX0, a random seedr0 and initial timet = 0.

STEP2 Obtainτ = {τ1, · · · , τM} with Eq.2.10for all reactions (Rj : j = 1, · · · ,M)

τ j =
1
a j

ln

(
1
r j

)
(2.10)

• a j is a propensity of reactionRj calculated by populations of its reactants and reaction
rate constant(See Table2.3)

• r j is a uniform random number(The range ofr j is [0,1)).

STEP3 A reactionRµ whose element ofτ is the minimum value, is selected as the reaction which
occurs next.

τµ = min {τ } (2.11)

µ = Reaction ID
(
τµ

)
(2.12)

STEP4 Simulation timet is updated by addingt andτµ.

t = t + τµ (2.13)

STEP5 State of the model is updated by state update vectorνµ.

X ←X + νµ (2.14)

STEP6 Calculation of a reaction cycle is completed. Return to Step.2

A simulation proceeds repeating Step.2 to Step.3 until it satisfies the termination conditions.

2.3.5 DM: Direct Method

Direct Method, which is abbreviated as DM, is a statically equivalent algorithm with FRM.
The algorithm of DM is similar with it of FRM. Step 2 and Step 3 in FRM are replaced following

three schemes:

STEP2 Obtain propensitya = {a1, · · · , aM} for all reaction (Rj : j = 1, · · · ,M). Each of them is
calculated by Table2.3with populations of reactants and reaction rate constant.

STEP3 Calculate sum of all element ofa, which isa0.

a0 =

M∑
j=1

a j (2.15)

2. Stochastic Biochemical Simulation
2.3. Stochastic Biochemical Simulation Algorithm 11

Indexed Priority Queue

ID τ

6 0.5 1 0.6

7 1.8 4 2.1 8 0.8 5 1.5

9 2.6 3 3.3

2 0.3
31
12
93
54
75
26
47
68
89

Binary Tree
Reaction-Tree
Pointer

TreeLocationID

1

2 3

4 5 6 7

8 9

Fig. 2.7: A structure for Indexed Priority Queue

The time of the next reactionτµ and the index of the reactionµ are calculated by following
two equations, respectively. They use two uniform random numbersr1 andr2, whose ranges
are [0, 1).

τµ =
1
a0

ln

(
1
r1

)
(2.16)

µ−1∑
j=1

a j < r2a0 ≤
µ∑

j=1

a j (2.17)

2.3.6 NRM: Next Reaction Method

Computation time of SSAs, are proportional to the number of reactionM defined in the model (Both
computational order isO(M)). In 2000, Gibson and Bruck proposed an algorithmic methodology
to reduce computational order called Next Reaction Method or NRM, for simulating large-scale
biochemical model [20].

NRM is based on FRM, but introduces two types of data structure called Indexed Priority Queue
(IPQ) and Dependency Graph (DG).

In one reaction cycle of FRM, a reactionRµ which has the minimum element ofτ is selected as
a reaction which occurs next. Each element ofτ is regarded as the putative time of the next reaction.
It means that putative times are unused, but are recalculated per cycle in vain.

IPQ reduces the time for searching the minimum value, and DG minimize the number of calcu-
lation Eq.2.10. Computational order of NRM improves fromO(M) to O(log(M)) while preserving
statical equivalence with FRM. NRM is regarded that it has a potential for large scale simulation
which includes large number of reaction in the the biochemical model.

(1) IPQ: Indexed Priority Queue

Fig. 2.7 shows a data structure of Indexed Priority Queue (IPQ) with two memories, a binary tree
and a one dimensional array. The binary tree contains a set of reaction ID and its putative time (j, τ j)
in a node.τi in a parent node is always smaller thanτ2i andτ2i+1 in its children nodes.i is the node
index of the tree. One dimensional array is a pointer table which points to a location of the node in
the binary tree for each reaction ID. If the tree satisfies the condition, the smallestτ j (= τµ) is stored
in the root node. The reaction IDµ is also obtained by the node from the root node.

2. Stochastic Biochemical Simulation
2.3. Stochastic Biochemical Simulation Algorithm 12

Table 2.4: Operations for IPQ

ADD Adding a node at the end of the tree. After that, it is com-
pared and several nodes are exchanged in parental direction if
needed.

UPDATE Update putative time of a reactionτ j and it is compared and
several nodes are exchanged in parental direction if needed.

READ Reading a node from the arbitrary location in the tree.

R1 : A + B C

R2 : B + C D

R4 : E A

R3 : D E

R1 : R2
R2 : R1, R3
R3 : R4
R4 : R1

Dependency Graph

Fig. 2.8: A structure for Dependency Graph

The putative time of arbitrary reaction can be obtained by getting tree location of the reaction
from pointer table, and reading the tree node according to the location.

IPQ needs to provide three operations as shown in Table2.4. By exchanging nodes, variables in
the pointer table are swapped. Number of nodesM, which is identical to the number of reactions
defined in a biochemical model. The time complexity of NRM isO(log(M)) because time to update
the tree whose number of node in the binary tree isM, is domestic in a simulation for a biochemical
model which has largeM.

(2) DG: Dependency Graph

Updating populations alters putative times of a reaction. However, the influence of a reaction is
restrictive for only a few reaction whose populations are updated by occurred reaction. So, FRM
may include quite a large amount of wasteful computation because it recalculates allτ j every reaction
cycle.

Dependency Graph (DG) is a directed graph which indicates the relationship among reactions.
Fig.2.8shows an example of DG. Four reactions are defined in the example, each of them is assigned
at a vertex in DG. Each vertex has a loop edge to itself. Each reaction has edges to others when
destination reaction has a species in source reaction as reactants. DG is a list of reaction which is
updated when a reaction occurs.

For example, supposeR2 in Fig. 2.8 is selected as a next reaction. The putative time ofR2 is
recalculated according to Eq.2.10as same as FRM.

Populations ofB, C andD are updated byR2. According to occurrence ofR2, putative times have
to be updated for reactions including these three species as its reactants. As vertexR2 in DG has two

2. Stochastic Biochemical Simulation
2.3. Stochastic Biochemical Simulation Algorithm 13

Fig. 2.9: Flowchart of NRM

edges forR1 andR3, putative timesτ1 andτ3 are modified by Eq.2.18with updated state.

τ j,new =
a j,old

a j,new

(
τ j,old − t

)
+ t (2.18)

Gibsonet. al. reported that average number of edges from a vertex isD = 4.2 in theλ-phage
model which consist of 51 reactions and 71 species [20]. D has generally no direct bearing on the
size of the modelM, because it means only a barometer of complexity among reactions in the model.
Although value ofD determines the average number of calculation of Eq.2.18in a reaction cycle, the
computation time for updating the tree is more domestic at in whole simulation of NRM. After that,
Caoet. al.computationally obtained that computational time does not depend only on the number of
reactionN but also on an average number of modification of putative timeD in biochemical models
with around hundreds of reactions [19]. Their research outcome is introduced in Section2.3.8.

(3) Algorithm

Fig. 2.9 shows the flowchart of calculation for a reaction cycle by NRM. The computational proce-
dure of NRM is as follows :

STEP1 Set initial values for:

• model stateX(t0)

• simulation timet ← 0

• DG

STEP2 Calculateτ j for all reaction by Eq.2.10and store them into IPQ

STEP3 Select root node in the binary tree in IPQ as next reactionRµ

• Update state(X(τµ)←X(t) + νµ)

• Overwrite simulation time with the value of the root node (t ← τµ)

STEP4 New putative time for occurrence ofRµ is calculated by adding the result of Eq.2.10for τµ
and current simulation timet, and update the time in the root node (UPDATE operation will
be used).

2. Stochastic Biochemical Simulation
2.3. Stochastic Biochemical Simulation Algorithm 14

Table 2.5: Features of FRM, DM and NRM
FRM DM NRM

Random numbers used in a reaction cycle M 2 1
The number of the most heavy function M × τ M × a D × UPDATE(IPQ)
Time complexity O(M) O(M) O(log(M))

STEP5 Get the list of reaction whose putative timeτ j has to be modified by occurrence ofRµ.

STEP6 Modify all reaction in the list by reading and writing binary tree and obtainingτ j by Eq.2.18.

STEP7 Calculation of a reaction cycle is completed. Return to Step 3.

2.3.7 Summarize of exact SSAs

FRM, DM and NRM is developed focusing on the computational efficiency. Features of these al-
gorithms are summarized as Table2.5. These algorithms are proved that their simulation results are
statistically same. In time complexity, NRM is the most efficient algorithm while the calculation
scheme is rather complex. Although computations of FRM is wastefulness, the procedure is the sim-
plest and implemented easily. DM is known as an effective scheme to run on computers, and it is
frequently used as the benchmark for measurement of computational performance.

2.3.8 ODM: Optimized Direct Method

Cao et. al. deeply investigated the computational efficiency of various SSAs using by scalable
models, and proposed new optimized algorithm of DM called Optimized Direct Method (ODM)
[19].

As domestic function in DM is calculation of propensitya0, they tried to reduce the cost of this
function. It includes three major function branches :

1. Calculating propensitiesa

2. Accumulatinga j to obtaina0

3. searchingµ

ODM applies two optimizations for DM, (1) re-ordering reactions and (2) the dependency graph like
NRM.

First optimization is the re-ordering of reactions. They focused on the fact that frequencies of
occurrence reaction are biased in an actual large-scale model in which hundreds or thousands of
reactions are defined. That is, as biochemical models include almost multi-scale parameters such as
numbers of species and reaction rate constants, a few particular reactions are selected very frequently
in a reaction cycle. For example, in HSR, they reported only six types of reactions occur for 90%
of the whole a simulation, and 99% in case of 12 reactions. Therefore, they found that calculation
time for searchingµ could be reduced by re-defining the model by organizing the list of reaction in
order of frequency. To count the number of occurrence of reaction to obtain the frequency, several
simulations have to be run by some kind of SSA. According to results of simulation, reactions in the
model is sorted in a descending order of frequency.

Calculations for re-ordered model reach the break instruction in Eq.2.17faster than calculations
for pre-ordered model. Re-ordered HSR model could improve computation time for about 11.87%
compared to default HSR model. In addition, it can also improved computation time about 25.12%
compared to the worst HSR model which was sorted in ascending order of frequency.

2. Stochastic Biochemical Simulation
2.3. Stochastic Biochemical Simulation Algorithm 15

Table 2.6: Execution time for LCS and TIS on 1.4GHz Pentium 4
LCS [sec] TIS [sec]

DM 2.13 5.39
NRM 1.07 2.63
ODM 0.86 3.72

Second feature is dependency graph to reduce the number of calculation for calculating propen-
sitiesa and accumulatinga j to obtaina0. Like NRM, it does not need to recalculate all propensitya j

every reaction cycle, but only necessary minimum number. Therefore a dependency graph can also
be exploited to reduce the calculation. It can be realized by subtracting olda j,olds froma0 and adding
newa j,news instead of accumulatinga j again every reaction cycle.

Caoet. al. reported execution time for LCS and TIS on 1.4 GHz Pentium 4 as shown in Table2.6.
Calculation cost of ODM is higher than that of NRM in case ofD ≪ M andS ≈ M/2, whereS is
the time to findµ, but actual biochemical systems are often multi-scale, soS ≪ M/2 is approved.
Thus, ODM is an effective algorithm for simulating many biochemical systems.

2.3.9 τ-leaping Method

τ-leap method, which was proposed by Gillespie in 2001, calculates behavior of biochemical model
by a unit of finite minimal time to reduce calculation time [21]. Exact SSAs described above need
to repeat calculation of a reaction which occurs next and update state and simulation time one by
one. Hence, it becomes one of the major cause of vast calculation time in the case when many
types of molecules are defined in the model. However, Gillespie argued that practical biochemical
simulations do not require such complete record about the order of occurrence and time about every
reaction. For example, when populations of a few species fluctuates, many reactions may be selected
not to affect the behavior of the model. In a such case, the exact SSA will not compensate for the
computational time.τ-leap method is developed reduce the computational cost by changing a unit of
one loop from one reaction to one time step.

Suppose propensity vectora j(X) at the population vectorX. If increase or decrease of species
is within the allowable range, valuek j , number of times that reactionRj occurs between time [t, t+τ),
is obtained from random number that is in the range ofP(a j(X), τ), a probability density function
for Poisson distribution. Every minimal timestep,a j(X), a probability for occurrence of reaction
Rj , is calculated for alljs, its number of occurrence is obtained from a Poisson random number, and
the result is reflected to model statusX. Some errors can be observed to value of probabilities for
occurrence of reactions, because it depends on system’s statex which varies according to number of
molecules in the system.

Gillespie compared the error rate ofτ-leap method with other rigorous SSA algorithms with sim-
ulated system with four reactions. As the result, he found that reasonable approximation is possible
by determining a valueϵ, an admissible error coefficient.ϵ varies according to the system, so current
τ-leap Method cannot be applied for simulations of general systems. Now there are ongoing studies
on determination methodology ofϵ and algorithms that accommodate to general systems.

The originalτ-leap method is called explicitτ-leap method. It is still developing and challenging
algorithm as an alternative of exact SSA, and Gillespie expects that it is going to be a promising
approximation method for exact stochastic biochemical simulation. Actually, various modified al-
gorithm ofτ-leap method have been proposed, such as implicitτ-leap method [22] and trapezoidal
τ-leap method [23].

2. Stochastic Biochemical Simulation
2.4. Applications 16

2.4 Applications

2.4.1 Overview

Software developers and biologists have built various simulation software. Some of them follow
proposed algorithm exactly, and some extend their unique features. This section introduces four
representative software called STOCKS, STOCHSIM, E-cell version 3 and STOCHKIT around the
stochastic biochemical simulation.

2.4.2 STOCKS

STOCKS(STOChastic Kinetic Simulation) [9] developed by Kierzek is a software for the stochastic
kinetic simulation.

(1) Aspect

STOCKS is software which adds two main functions to Direct Method : (a) cell growth and division
and (b) random pool.

First, STOCKS accommodates to simulate several cell generations. It introduces the scheme
to treat the growth of cell volume with time and divide into two cells. Following two natures are
assumed to simulate cell growth and division. (1) volume of a cellV(t) is increased according to
the time evolution and the doubled for a cell generation. (2) after cell division, a volume of each
cell is halved to the initial value. These features are implemented by introducing functionV(t) with
simulation timet as a variable.V(t) is a function given by Eq.2.19.

V(t) = 1+
t
T

(2.19)

T is value for a time of a generation of the cell. By introducing Eq.2.19, it can express the linear
increase of cell volume according to time evolution.

When the model introduces the cell generation, stochastic reaction rate constantsc j are updated
by the value ofV(t) in each simulation cycle. The relationship between reaction rate constantc j and
cell volumeV is explained in AppendixB. Whent = T which meansV(t) = 2, it reaches the end of
generation of a cell and cell division occurs. Stochastic reaction rate constantsc j is determined by
Eq.2.20.

c j =
k j

NAV
(2.20)

NA is an Avogadro number. The second order reaction uses Eq.2.21instead of Eq.2.20.

c j =
2k j

NAV
(2.21)

At the moment of cell division, volumeV and valuesc j are return to initial values and the species
numbers are divided by 2. Numbers of species which model DNA are doubled before division to hold
the populations after cell division. The technique to express cell growth and cell division as linear
change of volume can approximate simulation results with model of procaryotic organism [24, 25].

Second, it introduces the “random pool” as population of chemical species. The population as
random pool changes by every read operation. It can be useful to introduce cellular substances which
are in dynamic equilibrium as a result of many competing processes. STOCKS introduce this feature
for the RNA polymerase pool whose molecular number is obtained by Gaussian distribution with
a specific mean and standard deviation before computinghµ andaµ value with Direct Method. The
mean of the distribution can be set according to experimental estimates. Kierzek obviously explained
that even though random pools can be justified in many cases, there is no mathematical proof.

2. Stochastic Biochemical Simulation
2.4. Applications 17

(2) Implementation

STOCKS written in C++ language with an object-oriented programming. It is designed to suite
background job on a UNIX operating system, because it requires long execution time of a few hours
or even days. STOCKS uses Marsaglia’s random number generator [26] whose cycle is 2144.

STOCKS also provides following four utility programs to analyze simulation results.

1. Obtaining average trajectories within specified time interval

2. Adding or subtracting populations for two trajectories

3. Computing mean population

4. Fitting the linear function to the specified part of the trajectory

(3) Evaluation

Kierzek shows two examples to explain STOCKS’s performances based on executions on a single
Pentium III 800MHz processor running on Linux operating system. Both results are observed as
same as original behavior of these models.

First is the kinetic model of procaryotic gene expression which was presented in Kierzek’s previ-
ous paper[24]. It models the speed of protein synthesis and mRNA levels in thelacZ gene ofE.coli.
This model consist of eleven reactions by twelve chemical species. STOCKS runs 100 simulations
this model for ten generations of the cell with a generation time of 2100 seconds. This execution
takes about 22 hours CPU time.

Second is a modellacZ and lacY genes expression and enzymatic/transport activities of LacZ
and LacY proteins. Kierzek focused on this example to investigate the applicability of STOCKS to
models involving both enzymatic processes and small populations. A number of reactions whose
magnitude is between 108 and 109 in a generation. An execution time is about 2.5 hours for one
simulating generation, and about 90 hours for ten generations.

2.4.3 STOCHSIM

STOCHSIM [10, 27, 28] which was developed by Shimizuet. al. is a biochemical simulator that
applies stochastic approach. The purpose of STOCHSIM is to overcome weakpoints of Gillespie’s
algorithm.

(1) Weakpoint of Gillespie’s algorithm and its solution

SSAs proposed by Gillespie only focused on type of chemical species and their population. Like tra-
ditional ODE-based simulation method, it does not consider spatial distribution of chemical species
in the model. This cannot accommodate to models which defines proteins that multiply-transforms
due to isomerization activities and/or affinity bindings. The reason is that the status of each molecules
may exhibit heterogeneous properties, and the model may be described in as many as several million
reactions as its refinement proceeds. Hence, it is intractable to implement these features, because
simulation time increases linearly to the number of reactions with both analytical and Gillespie’s
approaches.

STOCHSIM extend the format of molecule to accommodate to various 3-dimensional structure
and features.

2. Stochastic Biochemical Simulation
2.4. Applications 18

(2) Aspect

• Definition of multistate molecule
STOCHSIM calculates the behavior of the model by basic monomolecular reaction and bi-
molecular reaction. Each molecule in the model is defined as the object called “Multistate
molecules”. It can store several molecular expressions in themselves. The variable in the
object is used when the reaction probabilities are different depending on the state such as
molecular interactions such as covalent modifications and conformational changes.

• Definition of reaction probability and calculation time
STOCHSIM applies a simulation method of repeating calculation per constant minimal

time step instead of obtaining simulation time based on a stochastic model. In the beginning
of initialization of a simulation, reaction probabilities of all reactions are computed based on
user-defined kinetic constant values, and are stored in an LUT. Concrete time step per one
simulation cycle is adjusted so that it does not affect the user-define kinetic constant values per
cycle.

After these basic configuration is set, the simulation proceeds by repetition of simple com-
puting processes which is to randomly select on unimolecular or bimolecular reaction. Unique
approach of STOCKSIM is that users can define “pseudo-molecules” for the aim of simplifi-
cation. Pseudo-molecules are virtual molecules which do not exist in real models, and is only
used to simplify the description of mono- and bimolecular reactions. For example, when one
out of the two reactant molecules was a pseudo-molecule, the reaction is treated as monomolec-
ular. Quantity of pseudo-molecules represent occurrence frequency of monomolecular reac-
tions.

• Implementation
Original STOCHSIM was developed as a simulator run on Microsoft Windows operating

system, and it provided GUI operating environment which was based on MS/MFC(Microsoft
Foundation Class). Recent STOCHSIM is written in Standard C++ language, and its GUI
operating environment written in Perl/Tk interface to execute on other operating systems such
as UNIX, Linux, and MacOS.

STOCHSIM can output numbers of molecules and their molecular state at every time inter-
val. It can also display graphical snapshot for the state of the molecules and their distribution
in the simulation space.

Algorithm

Simulations using STOCHSIM proceeds in a following manner. Simulation time is quantized to
discontinuous minimal time steps. Per time step, one type of object among molecules in the system
is randomly selected. Note that the molecule selected at this point cannot be a pseudo-molecule.
Next, another object is selected among the system, and this time it could possibly be a pseudo-
molecule. If two actual molecules are selected, it would cause a bimolecular reaction. If the pair is
one actual molecule and a pseudo-molecule, STOCHSIM treats this as a monomolecular reaction.

A value of reaction possibility for the occurred reaction would be read from software-based
LUT. Based on this value, a random number is generated, and the reaction is judged by comparing
the random value and reaction possibility. If the reaction occurred as a result of the judge, the system
is updated by modifying its populations and their status.

The following equation computes a probability of reaction occurrence after a selection of a
molecule.

2. Stochastic Biochemical Simulation
2.4. Applications 19

• If a molecule A and a pseudo-molecule are selected, a probability of A reacting in a monomolec-
ular reaction is

P =
k1 × n× (n+ n0) × ∆t

n0
(2.22)

• If two actual molecules are selected, a probability of them reacting is

P =
k2 × n× (n+ n0) × ∆T

2× NA × V
(2.23)

Variables in equations above indicate following factors.

• Nx : populations of speciesx in the model

• n0 : population of pseudo-molecule in the model

• k1 : Reaction rate constant of monomolecular reaction (s−1)

• k2 : Reaction rate constant of bimolecular reaction (M−1s−1)

• ∆t : Time step

• NA : Avogadro number

• V : Volume of the model

Number of pseudo-molecules is determined by Eq.2.24where [x] represents the closest natural
number tox.

n0 =

[
2× NA × V × k1,max

k2,max

]
(2.24)

In Eq.2.24, k1 andk2 represent fastest reaction probabilities among all monomolecular reaction and
bimolecular reaction, respectively.

Multistate molecules

In STOCHSIM, instances of molecular objects have an internal state. Enzyme activities and signal
transmission of proteins are controlled by various factors such as covalent modifications, bindings
of ligands and subunits, and protein conformational changes. They are modeled by internal state
of molecular object instances. Precisely, status of a molecule is managed by a list of 1-bit flag.
For example, there is a flag that determines whether an external ligand would bind to a membrane
trafficking acceptor.

Developmental status

Version 1.4 of STOCHSIM was released in 2004 [27]. It supports realistic models compared to
Gillespie’s algorithm in terms of computation using small time step value or multistate molecules.
Also it supports models that are affected by thermal dynamics. On the other hand, there is a strong
demand for a computation environment with larger memory capacity and computation power to
reduce simulation time. Original version 1.0 could treat a well-stirred solution reacting system, and
version 1.2 supports cross-reaction among molecules in two adjacent lattice when the system space
is portioned in a 2-D grid. This feature can be applied to simulating receptors closely-spaced on cell
membranes [28]. Studies on expression methods of system space is still being refined to this day.

2. Stochastic Biochemical Simulation
2.4. Applications 20

Simulation Model

State variable

X ,X , ... ,X1 2 n

ODE stepper

Discrete stepper

Runge-Kutta
Fehlberg Dormand/Prince

Next Reaction Method

Interrupt & Synchronization

Fig. 2.10: A simulation model of E-Cell version 3

2.4.4 E-Cell version 3

E-Cell is a whole cell simulator which has been developed by Tomita laboratory in Keio University
[4]. E-cell version 3 is an integrated cell simulator which adds stochastic simulation feature to
traditional ODE-based simulation [29].

E-Cell 3 is an object-oriented cell simulator written in C++ language. It allocates each reaction
which is defined in the simulation target model to the class called stepper, and can execute hybrid
simulation of ODE- and stochastic approach. Each stepper can choose the quantitative changes of
species from 3 types, ODE-based analytically-determined variation, discrete event and discrete time.
Fig. 2.10shows the simulation model in E-cell3.

E-Cell 3 examines interrupt signals from steppers in it according to progressing the simulation.
When the interruption request comes from a stepper, the model synchronize all stepper and update
its state.

ODE-based stepper can select a solver depending on required accuracy. E-Cell 3 provides two
solvers based on explicit Runge-Kutta method: Fehlberg method to calculate the second order accu-
rate solutions and Dormand/Prince method to calculate that of the forth-order.

ODE-based stepper calculates time-evolution of populations every time step. At that time, E-
Cell 3 adjusts time interval in a step adaptively through comparing populations of pre- and post-
time step. While step interval is shortened to cover loss of precision when variation of species reads
rapid fluctuation, it is alternatively elongated to accelerate computational speed when the fluctuation
velocity is low. A simulation proceeds by repeating synchronization of all stepper with the stepper
which has the minimum simulation time.

On the other hand, a stochastic stepper calculates simulation by NRM. Mersenne-Twister [30]
is adopted as a random number generator algorithm. While exact fluctuation of populations can be
observed by a stochastic stepper, it is strictly required to synchronize among steppers. Therefore,
each stochastic stepper has a parameterξ as an error margin. In example ofξ = 0.1, synchronization
is conducted when 10% of the population is exchanged.

To examine this algorithm, Takahashiet. al. [29] evaluated calculation speed by HSR with three
different approaches : all reaction is allocated as ODE-based stepper, all reaction is allocated as
stochastic stepper, and hybrid models. The hybrid model outperforms by 2.6 times compared to the
ODE-only model, and it is also 351 times faster than the stochastic-only model. The cause that the
hybrid model is faster than ODE-only model may be that stiff reaction is allocated to the stochastic
stepper, according to their report.

2. Stochastic Biochemical Simulation
2.4. Applications 21

STOCHKIT

Exact SSA
Popular Gillespie SSA

Tau-leaping

Direct Method

Optimized Direct Method

Slow-scale SSA

Adaptive Stepsize

Fixed Stepsize

Explicit Tau-leaping

Inplicit Tau-leaping

Trapezoidal Tau-leaping

Poisson

Binomial

Fig. 2.11: Algorithms in STOCHKIT

2.4.5 STOCHKIT

STOCHKIT(Stochastic Simulation Kit) developed by Caoet. al. is a stochastic biochemical simula-
tion framework written in C+ language [31]. Although it is now in beta version, various algorithms
are provided. They are roughly divided into two choices, popular Gillespie SSA andτ-leap method
as shown in Fig.2.11. Popular Gillespie SSA includes Direct Method [16], Optimized Direct Method
[19], and slow-scale SSA [32]. τ-leap method also adopts explicitτ-leap method [21], implicit τ-leap
method [22], and trapezoidalτ-leap method [23].

At the beginning of a simulation, a biochemical model written in SBML is converted to an in-
put file for STOCHKIT. A simulation process is executed according to the algorithm descripted in
the setting file, and output result data is written per time interval. STOCHKIT provides not only
simulation engine, but also some additional components to analyze results and high performance
computation. STOCHKIT accommodates to parallel execution environment such as PC-cluster by
utilizing its MPI interface.

Caoet. al. bundled some sample biochemical models for use on STOCHKIT. Especially, the
HSR model for STOCHKIT is used in the evaluation benchmark in this thesis.

Chapter 3

Systems using Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are a commercially available silicon devices which pro-
vide instant manufacturing of logical functions with low prototype costs [33]. Fine-grain pro-
grammable logic blocks with Look-Up Tables (LUTs) allow users to customize large-scale circuit
designs of their desire without any fabrication facility.

3.1 Architecture of an FPGA

FPGA is a programmable device whose basic unit is an LUT. Ann-input m-output LUT consists a
logic function memory forn-bit address andm-bit words. Majority of commercial FPGAs consist of
4-input 1-output LUT, which makes a memory with 4-bit address and 1-bit word. There are basically
three types for the process technology of FPGAs:

• SRAM
A volatile memory, which is applied to a majority of commercial FPGAs. These FPGAs must
be configured each time the power is applied to the chip. Compared to other technologies, it
requires relatively large chip area.

• Anti-fuse ROM
An electrical device that are widely used to permanently program logic circuits. The chip area
becomes relatively small using an anti-fuse, but their manufacture requires modification to the
basic CMOS process, which is the major disadvantage.

• EEPROM
A non-volatile storage chip, especially used in devices such as USB flash drives. It can be
programmed and erased electrically in-circuit, unlike EPROM whose trapped charge needs to
be removed from the floating gate when it is re-programmed. The disadvantage is that they
consume about twice the chip area of EPROM transistors, and also require multiple voltage
sources.

The programmable resource of Xilinx Virtex-II/Virtex-II Pro series, a core device of ReCSiP, are
SRAM-based FPGAs. Its manufacture process is quite similar to that of CMOS, so that it benefits
richly from the latest technology of circuit scale expansion.

The architecture of Xilinx FPGA is as in Fig.3.1. It adopts Island-style, the most typical archi-
tecture. It consists of the following three blocks:

• Logic block

• Connection block

3. Systems using Field Programmable Gate Arrays
3.2. General architecture of Xilinx Virtex-II FPGA 23

L

S

C

C

L

S

C

C

L

S

C

C

L

S

C

C

L

S

C

C

L

S

C

C

L

S

C

C

L

S

C

C

L

S

C

C

L

S

C

C

L

S

C

C

L

S

C

C

L

S

C

C

L

S

C

C

L

S

C

C

L

S

C

C

L

S

C

C

a) The Basic "Block" of FPGA b) Structure of an Island-Style FPGA

L:
C:
S:

Logic Block
Connection Block
Switch Block

Fig. 3.1: Architecture of Island-style FPGA

• Switch block

Fig. 3.1(a) is the most basic unit, and a large-scale circuit shown in Fig.3.1(b) is configured by
laying out many of them. The uniformity of its structure fabricates the manufacturing of FPGAs with
different logic size, offered simply by altering the number of logic blocks(L).

A logic block consists of an LUT and an interconnection to a neighboring connection block(C).
A connection block is a programmable switch that is used to connect the pins of the neighboring
logic blocks. At the intersections of horizontal and vertical routing channels is a switch block(S),
which is a routing switch connecting wire segments in a channel segment to those in another. This
routing architecture is the key for high flexibility of an FPGA.

3.2 General architecture of Xilinx Virtex-II FPGA

This subsection provides descriptions of Xilinx Virtex-II architecture. This general architecture is
common in the following families of Xilinx FPGAs: Virtex-II series [34] and Virtex-II Pro series
[35].

3.2.1 Architecture of CLBs

The architecture of a logic block is shown in Fig.3.2. A Configurable Logic Block (CLB) is depicted
in Fig. 3.2(a), which was described as a “logic block” in the previous subsection. One CLB consists
of four blocks called slices. The architecture of a slice has 4-input LUT and two registers, as shown
in Fig. 3.2 (b). A sequential circuit can be set up with the LUTs and a combinational circuit by the
registers. A multiplexer between the LUT and the registers may directly bypass the output of LUTs,
or configure a logical function of four input or more by connecting multiple LUTs in a cascade form.

Each slices also have dedicated resources for several commonly used circuit structures, as shown
in Fig. 3.2 (a). For example, when an LUT is used as shift registers, these dedicated channels may

3. Systems using Field Programmable Gate Arrays
3.3. Applications in molecular dynamics 24

Switch
Matrix

Slice
X0Y0

Slice
X0Y1

Slice
X1Y0

Slice
X1Y1

SHIFT

COUT

COUT

CIN

CIN

F
as

t c
on

ne
ct

s
to

 n
ei

gh
bo

rs

IN

OUT

LUT REG

LUT REG

a) CLB Structure b) an Abstracted Structure of Slice

Fig. 3.2: Architecture of a CLB of Virtex-II FPGA

eliminate circuit area of an FPGA and improve its maximum frequency. Then IN/OUT pins become
a shift-chain which effectively consists a long shift registers between multiple LUTs and slices, while
CIN/COUT pins connect carriers from full adders.

3.2.2 The overview of Virtex-II FPGA

The architecture of Virtex-II FPGA is shown in Fig.3.3. Multiple I/O Blocks (IOBs) fit into either
height of one row or width of one column. It adopts a programmable architecture that provides
connectivity to various signaling standards, such as CMOS, LVTTL, SSTL, HSTL, and so on. It also
equips registers for a DDR input and output.

The CLBs are arranged in a grid, and the interconnected channels are laid out in between. Some
stripes of memory blocks called BlockRAMs and embedded 18x18-bit multipliers are longitudinally
arranged among the CLBs. These hard macros of memories and multipliers prevents increase of
circuit area and contributes to the improvement of its maximum frequency.

The architecture of Virtex-II Pro series is similar, with accession of a built-in PowerPC 405
processor and RocketIO multi-gigabit transceivers (MGTs). These components construct control
microprocessors and high-speed serial communication interface on a single chip, to perform great
advantage for applications with frequent I/O data transfer and high-speed process.

3.3 Applications in molecular dynamics

This subsection introduces some examples of high performance computing systems on FPGAs.

3.3.1 Advantages of FPGA-based architectures

Currently, dedicated computing systems are major solutions for accelerating operations in sci-tech
applications, as represented in GRAPE [36]. However, they are fraught with low flexibility toward
other operations and high development cost.

On the other hand, FPGAs consist with the advantages of dedicated hardware and the flexibility
of software. Increasing logic capacity allows implementation of applications with floating-point
operations, triggering the rise of commercial computers with FPGAs as coprocessor. The following

3. Systems using Field Programmable Gate Arrays
3.4. Related works : Stochastic Biochemical Simulator on an FPGA 25

Programmable I/Os

Configurable Logic

a) Overview of an Virtex-II FPGA

Block RAM CLB 18x18 Multiplier

IOB Digical Clock ManagerClock Buffer

b) Basic Structure of Virtex-II FPGA

Fig. 3.3: Architecture of Virtex-II FPGA

subsections provide one of the examples of FPGA-based commercial computers and its application
to bioinformatics.

3.3.2 PROGRAPE-3 (Riken/Tokyo Electron Device)

PROGRAPE (PROgrammable GRAPE), developed by Tokyo Electron Device, Chiba University and
Riken (Fig.3.4), is an accelerator for numerical simulations, especially for many-body problems
such as intermundane gravity simulations. It is a derivative of GRAPE project; the crucial difference
is that the computational pipeline originally on an LSI is implemented on FPGA chips in the case
of PROGRAPE. The PROGRAPE board called Bioler-3 is a PCI card with four Xilinx Virtex-II Pro
FPGA (XC2VP70-6), and is dedicated to calculate the interactions between particles while the host
PC performs all other calculations. According to the recent study by the implementers, 236 GFlops
is achieved for solving a forementioned problem [37, 38].

3.3.3 Molecular dynamics simulation

A research on a complex cubic structure and function of proteins based on molecular dynamics
(MD) is a crucial part of computational chemistry, by simulating intermolecular forces between a
protein and other molecules. MD simulations are one of the classical approaches to biochemistry
and other studying fields. A recent study presented that an implementation of MD on an FPGA
are effective compared to implementations on existing solutions as represented in parallel systems or
special purpose hardware such as PC clusters or MD-GRAPE, in terms of acceleration and capability
of problem size [39].

3.4 Related works : Stochastic Biochemical Simulator on an FPGA

3.4.1 Overview

Since 2004, there were several studies to implement and evaluate for stochastic biochemical simula-
tor on FPGAs.

3. Systems using Field Programmable Gate Arrays
3.4. Related works : Stochastic Biochemical Simulator on an FPGA 26

XC2VP70-6 XC2VP70-6 XC2VP70-6 XC2VP70-6

XC2V1000-6

64bit on-Chip Bus

144bit

144bit

144bit

Virtex-II Pro Virtex-II Pro Virtex-II Pro Virtex-II Pro

Virtex-II

133MHz DDR-SDRAM
SO-DIMM

133MHz DDR-SDRAM
SO-DIMM

133MHz DDR-SDRAM
SO-DIMM

133MHz DDR-SDRAM
SO-DIMM

64bit/66MHz PCI Bus PROGRAPE-3 (Bioler-3) Board

Fig. 3.4: Architecture of PROGRAPE-3 (Bioler-3)

1. Keaneet. al. developed hardware generation system which loads biochemical model as an
input [40], and reports its performance. Their algorithm is modified to run on an FPGA pro-
posed by Salwinski and Eisenberg. Lok also discussed the possibility of FPGA accelerating
stochastic biochemical simulation by appropriate modification of SSAs [41, 42].

2. Thurmonet. al. implemented an accelerator for a part of SSA, and evaluated it on a real
FPGA-system [43].

3. This thesis is also based on a background by our researches in a part of ReCSiP project from
2004.

In this section, four studies mentioned above are introduced in detail, and discuss their perfor-
mance estimation, advantages and disadvantages.

3.4.2 Keane’s approach

Keaneet. al. implemented and evaluated an FPGA-based stochastic biochemical simulator gener-
ation system [40]. They implemented a modified version of SSA to adjust to an execution on an
FPGA. Additionally, research group of Lok and Salwinski also proposed a similar idea of Keane’s
approach [41, 42].

They focused that a number of the reaction occurence follows Poisson distribution with its
propensity as a parameter derived from Gillespie’sτ-leap method. The number of reaction in a
time step is derived by Eq.3.1.

S1 + S2
k−→ S3 =⇒ Poisson(k · X1 · X2) (3.1)

Eq. 3.1 can be approximated to Eq.3.2 because a number of reaction occurence is one at most
by applying adequately small time step∆t.

S1 + S2
k−→ S3|∆t =⇒ Bernoulli(k · X1 · X2 · ∆t) (3.2)

Probabilityp of Bernoulli process is determined by multipling probabilitypi of Bernoulli process
as p = p0 · p1 · · · pi . As multiplications are regarded as a logical AND, Eq.3.2 can be rewritten as

3. Systems using Field Programmable Gate Arrays
3.4. Related works : Stochastic Biochemical Simulator on an FPGA 27

S1

S2 S2
*

S3 S3
*

SM SM
*

Fig. 3.5: Cascade model evalulated in Keane’s system

Eq.3.3.

P
[
S1 + S2

k−→ S3

]
|∆t = P0 · P1 · P2

= P[r0 < k] AND P[r1 < X1] AND P[r2 < X2] (3.3)

In Eq. 3.3, variablesr i are uniform random numbers. Eq.3.3 can be implemented on an FPGA
as a combination of random number generator and counter for species. Furthermore, reactions in
the model can be evaluated in parallel without floating-point calculation. An interval of time step is
variable according to the number of reaction occured in recent time step.

Their simulator generator compiled the simulation hardware from common hardware modules
which evaluates a reaction for 3 clock cycles and their interconnection by loading the model written
in SBML. A simulator is configured so that the structure would contain the same number of reaction
modules as reactions defined in the model.

The signaling cascade model is shown in Fig.3.5. It can be extended easily when it is used
to evaluate the performance of generated hardware. As shown in Table3.1, the performance of
Keane’s FPGA-based system outperforms about 20 times compared to execution on 2.0 GHz Pen-
tium4. However, the generation system has following problems. The logic resource of generated
hardware requirement is propotional to the number of reaction defined in the model. Therefore,
hardware resource for a model with up to about 120 reactions exceed the resouce of the largest
FPGA of the time (Xilinx’s Virtex-II XC2V8000). Moreover, as the unit of calculation is modified
to time step from originally event-driven algorithm of SSA, the performance gain may not be easily
applied to other biochemical models.

3.4.3 Thurmon’s implementation

To deal with the problem of increasing logic resource, Thurmonet. al. proposed another approach
to accelerate SSA using FPGA [43].

Table 3.1: Performance of Keane’s system compared with the NRM on a 2.0GHz Pentium 4

Reactions 1 4 8 16 32
Species 2 8 16 32 64
Events/sec
hline FPGA 2,711,405 3,052,482 4,695,500 7,572,711 7,494,402
Events/sec
hline 2.0 GHz Pentium4 333,333 160,000 256,410 285,714 320,000
Gain 8.1 19.1 18.3 26.5 23.4

3. Systems using Field Programmable Gate Arrays
3.5. Our previous work 28

Propensity
Calculator
(One reactant
 of on/off reaction)

Propensity
Calculator
(One reactant
 of any type)

Propensity
Calculator
(Two reactant
 of on/off reaction)

Propensity
Calculator
(Two reactant
 of any type)

Σ

Reaction
Equations

Species
Poputaions

LFSR

*
Rxselect

FPGA

Update

Total
Propensity

Selected
Reaction

To CPU

Fig. 3.6: Thurmon’s hardware design

In a reaction cycle of SSA, the most frequently used operation is a propensity function, as shown
in equations in Table2.3. Thus, they off-loaded this part to an FPGA.

They implemented FPGA-based DM calculation system using pipelined multipliers and an accu-
mulator. For hardware operation, they converted floating-point arithmetics to integers. They argues
that lack of accuracy can be prevented by selecting appropriate bit-width for calculation.

Fig. 3.6shows the design of Thurmon’s implementation. A propensity is calculated by chosing a
propensity calculator according to the shape of the reaction from population as input. All propensity
are calculated by pipelined hardware modules to increase the throughput.

Thurmonet.al. evaluated their implementation on a memory-slot connected computing system
equipped FPGA called Philchard [44]. They adopted two simulation models, Self-Regulated Model
(M = 14) and Genomically Based Oscillation Model (M = 16) to compare its performance with a
microprocessors. Table3.2shows execution time of the result of their implementation compared with
four algorithms by Pentium III 1.0 GHz microprocessor. Although their implementation outperforms
all algorithms on microprocessor, the performance is not so higher than performances with Pentium
III, which is already categorized in earlier generation.

Causes of the supression of performance gain may be that as an FPGA on Pilchard, which uses
Xilix’s Virtex XCV1000E, is also earlier generation, efficient logic resource could not be provided to
parallel execution. The total sum of propensitya0 and selected reaction ID is transfered to host-PC
to record the simulation. The data communication between FPGA and host-PC may also be a cause
of supression for performance gain.

3.5 Our previous work

A study in this thesis began as a part of ReCSiP project, which stands for Reconfigurable Cell Simu-
lation Platform [45]. The ReCSiP project which began in 2001 is aims to develop an accelerator for
general purpose ODE-based simulation models.

In 2004, FPGA-based DM calculator was implemented and evaluated [46]. Although it was
limited to Lotka system as it was preliminary implementation, the throughput was about 105.13 times

3. Systems using Field Programmable Gate Arrays
3.5. Our previous work 29

higher than execution on Athlon 2800+. Main difference from other related studies is that multiple
simulations could be executed in parallel with pipelined floating-point arithmetic modules. However,
hardware must be re-implemented when it runs other models. To addition of this problem, the logic
resource for simulator expands according to the number of reaction defined in the model as same as
Keane’s implementation. In this section, the hardware structure of our previous implementation and
its evaluation to establish problems.

3.5.1 Analysis of Lotka System

To implement SSA on an FPGA, algorithm of DM is analyzed when the Lotka system is executed.
The Lotka system is well-suited for evaluation of Gillespie’s algorithm implemented on FPGA be-
cause the Lotka model is relatively small model and pululations are fluctuated around the certain
values.

Followings show a cycle of process in the Lotka system. It assumes that initialization has been
done.

Step 1. h j is stored in a value which is combination of populations of reactants in the current system
for each reaction

h1 = X1 · X2 (3.4)

h2 = X1 · X3 (3.5)

h3 = X3 (3.6)

h4 = X2 (3.7)

Step 2. propensitya j and the sum of thema0 are substituted with multiplication ofhν andcν, and
the sum ofaν

a j = h j · c j (j = 1, · · · , 4) (3.8)

a0 =

4∑
j=1

a j (3.9)

Step 3. Two new random numbersr1 andr2 are generated. 1/τ is calculated with multiplication of
1/ ln(1/r1) anda0. µ is determined by comparinga j with r2a0

1
τ
=

a0

1/ ln(1/r1)
(3.10)

µ−1∑
j=1

a j < r2a0 ≤
µ∑

j=1

a j (3.11)

Table 3.2: Performance of Thurmon’s system compared to a 1.0GHz Pentium III

Self-Regulated Model Genomically Based Oscillation
(M = 11) Model (M = 14)

SSA Exection Time Speedup Exection Time Speedup
DM-HW 77.798 1.00 78.259 1.00
FRM 814.033 10.46 805.044 10.29
DM 225.114 2.89 230.558 2.95
NRM 174.656 2.24 252.125 3.22
ODM 109.410 1.41 118.948 1.52

3. Systems using Field Programmable Gate Arrays
3.5. Our previous work 30

Reactor Module

Log
Table

time

X1

X2 X3

X4

Simulator module

Reactor Module

time X2 X3

time

X2

X3

Initialize

Host PC

64bit/66MHz
 PCI Bus

ReCSiP

Quick PCI

Reactor Module
Specific Part

Common Part
(Gillespie’s

 Algorithm)

(Lotka System)

time

log X1 X2 X3 X4

X1 X2 X3 X4

Lotka system module

SRAM 0

SRAM 1

SRAM 2

SRAM 3

Simulator
 Module

Output Control
 Module

Virtex-II

64bit Local Bus

XC2V6000-4BF957C

QL5064-PB456C-688

Lotka System module

Simulator
 Module

Fig. 3.7: Structure of the Lotka System Module

Step 4. Populations are modified byRµ

Step 5. Modified populationsX′1, · · · ,X′4 are referred by the next cycle of Step 1. Simulation timet
is updated by addingτ.

Step 6. Return to Step 1.

3.5.2 Overview of the Simulator

Section3.5.2 introduces design and implementation of the Lotka system for Direct Method on
ReCSiP-board.

Fig. 3.7 shows a hardware design of DM simulator for the Lotka system. The reactor module,
which performs Step 1, 2, 3, and 4 in the Section3.5.1, is parallelized and controlled. The Lotka
system module consists of two simulator modules and an output control module. Each simulator
module has two reactor modules as the core of simulator.

A simulator module starts calculation when it receives the random seed and initial value of
molecule numbers stored in the SRAM module. The results from two simulator modules (four reactor
modules) are stored into the SRAM modules through the output control module.

3.5.3 Simulator Module and Reactor Module

Each simulator module simply consists of two reactor modules, which share a logarithmic table. A
reactor module processes a cycle of the Lotka system with Gillespie’s algorithm. In the first step of
the process, the module receives the molecule numbers,X1, · · · ,X4. Then, it processes a cycle of the
Lotka system with Gillespie’s algorithm. Finally, it outputsτ and molecule numbersX′1, · · ·X′4 after
the reaction. Molecule numbersX′1, · · ·X′4 are used in the next input of reactor module. AsX′2,X

′
3 and

3. Systems using Field Programmable Gate Arrays
3.5. Our previous work 31

X1 X2 X3 X4

INT
MULT

INT
MULT

FP
MULT

FP
MULT

FP
MULT

FP
MULT

FP
ADD

FP
ADD

FP
ADD

FP
COMP

FP
MULT

RND
GEN

LOG
TABLE

RND
GEN

FP
MULT

Lotka Reaction

Input

Output

X1 X2 X3 X4 τ

1

FP
SUB

1

clock = 0

clock = 37

clock = 52

C1

FP
DIV

FP
ADD

clock = 57

time

To Next
Reaction

C2 C3 C4

’ ’ ’ ’

Fig. 3.8: Data-flows in Reactor Module

τ are required for the evaluation of the simulation result, they are transferred to the output control
module.

The reactor module consists of two parts; the common part for Gillespie’s algorithm, and the
specific part for the Lotka system. By separating them, the common part can be used for the other
reactor modules. That is, by replacing the reactor module in Verilog-HDL code level, other reactions
can be simulated.

The common part calculatesτ andµ, and also generates random numbers. The target-specific part
processes the combinations of reactions, then increases or decreases numbers of molecules according
to the result of calculatedµ.

A reactor module has four kinds of major functional units, which are two 32bit integer mul-
tipliers, five single-precision FP adders, six single-precision multipliers, and a single-precision FP
divider.

• Single-precision FP multiplier includes 18×18 bit dedicated multiplier blocks (distinct features
of Virtex-II)

• Single-precision FP divider uses 2bit-base subtract-and-shift divider

• 32 bit LFSRs (Linear Feedback Shift Registers) are used for the random number generation
with M-sequences

Fig. 3.8 shows the flow of calculation in the implemented reactor module. The reactor module
has 37 pipeline stages. It takesX1, · · · ,X4 as inputs, then outputs populationsX′1, · · ·X′4 andτ after a
reaction through step 1, 2, 3, and 4 described before. The output takes 37 clocks forX′1, · · ·X′4, and
52 clocks forτ. So, it is possible to execute 37 independent simulation processes at a time. These

3. Systems using Field Programmable Gate Arrays
3.5. Our previous work 32

X2
X3

time X2
X3

time X2
X3

time X2
X3

time

X2
(SRAM1)

X3
(SRAM2)

 time
(SRAM3)

148 stages

Shift Register

Fig. 3.9: Structure of Output Control Module

multiple concurrent executions are advantageous in this kind of stochastic simulation which returns
an average of the iterative executions.

Values of 1/ ln(1/r1), which are required to calculateτ, are stored in 32bit width tables whose
depth are 215. The tables are implemented on Block RAM on Virtex-II.τ is derived with multiplica-
tion of the fetched number anda0 (the sum of the reaction probability of each reactionaν).

The reactor module has 32bit-width 37 entries shift registers which store the total simulation
timest. Each register updates value by adding previoust andτ at the end of a cycle.

3.5.4 Output Control Module

The Lotka system module has two simulation modules each of which has two reactor modules, and
in a reactor module, 37 simulation processes are executable in parallel. Therefore, maximum 148
simulation processes are “on-the-fly” in the whole the Lotka system module. Total simulation time
t, number of prey speciesX2, and number of predator speciesX3 are generated with the simulation
of the Lotka system. These values are represented in 32bit integer or single-precision floating-point.
As a result, four sets of three 32bit data is generated from the Lotka system module with each cycle.

Output control module manages data transfer from the simulator module to SRAM modules. The
module works as follows.

• A set of three 32 bit data is transferred from reactor modules to SRAM modules with an
arbitrary cycle interval

• FIFO buffer for temporary storage of output data is provided. It begins to store data from the
reactor module in the specified cycle

Inputs of the output control module are four sets of three 32 bit data which aret, X2 andX3 per
clock. The module transfers them to SRAM modules with an arbitrary interval (that is, interval must
be nothing less than 5). Fig.3.9shows the structure of the output control module.

3.5.5 Evaluation

(1) Result of Synthesis and Place& Route

Table3.3 and Table3.4 show required resources and maximum operation frequency for the Lotka
system module.

Modules are described in Verilog-HDL. Synthesis and place & route are done with Xilinx ISE6.1i.
The target device is Xilinx’s XC2V6000-4BF957C, which is equipped on the ReCSiP board.

3. Systems using Field Programmable Gate Arrays
3.5. Our previous work 33

Table 3.3: Resource Utilization
Slices 18x18 Multipliers 18kbit BlockRAM

26091 (77.21%) 120 (83.33%) 132 (91.67%)

Table 3.4: Performance
Frequency [MHz] Throughput [cycle/sec]

76.25 304.88M

In order to optimize the clock frequency, this implementation is somehow specialized to the
Lotka system. So, it can not be extended for larger scale systems without modifying the Lotka
system directory in the current implementation.

Some simulation results are shown in Fig.3.10and Fig.3.11. These are results after 500,000
cycles of executions with ten output intervals. The difference between them is caused only by the
random seeds, and the conclusive simulation result of the Lotka system is obtained with taking an
average of them by appropriate time interval.

(2) Accuracy Verification

The accuracy and performance of the simulator on ReCSiP is compared with a software simulator on
common PCs.

Since the floating-point number arithmetic units on ReCSiP are not based on rounding algorithm
in the IEEE standard, its influence must be examined. In calculation ofτ, there is no error propagation
because the output is not used as the input of the next cycle. However, the result ofµ is used to
determine what the next reaction occurs. In this case, the accumulation of rounding errors may cause
a problem.

To examine the effect of rounding errors, the same simulator including an M-sequence generator
written in C is executed with the same random seed. Fig.3.12and Fig.3.13show the result of soft-
ware execution and result from ReCSiP board. They are measured after 100,000 cycles of execution,
and the output interval is 10. Trajectories of populationX2 andX3 are similar both in software and
in hardware execution. This shows that useful simulation results can be obtained from the hardware
execution on ReCSiP board.

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

po
pu

la
tio

n
le

ve
l

time

Simulation 1

X2
X3

Fig. 3.10: Example of a result

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

po
pu

la
tio

n
le

ve
l

time

Simulation 2

X2
X3

Fig. 3.11: Example of another result

3. Systems using Field Programmable Gate Arrays
3.5. Our previous work 34

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

po
pu

la
tio

n
le

ve
l

time

Software

X2
X3

Fig. 3.12: Execution by C Code

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

po
pu

la
tio

n
le

ve
l

time

Hardware

X2
X3

Fig. 3.13: Execution on Hardware

Table 3.5: Throughput of the Software

Processor Memory Environment Run-time Throughput
[µsec] [cycle/sec]

AthlonXP2800+ Free BSD 4.8
2.0 GHz 2 GB +gcc2.95.3 172,226 2.90M

Xeon 2.8 GHz Linux2.4.21
Dual(HT off) 4 GB +gcc2.95.3 214,219 2.33M

UltraSPARCIIIcu Solaris8
1.2 GHz 4 GB +gcc2.95.3 555,907 0.90M

(3) Performance Evaluation

Table3.5 shows response times and performance for 500,000 cycles of the software simulation of
the Lotka system. In the software execution, the program is compiled with -O3 option. Throughput
S is derived from the equationS = 0.5[Mcycle]/run-time [µsec].

The implemented Lotka system simulator can generate a result at intervals of 37 clocks, and the
maximum operation frequency is 76.25 MHz. Accordingly, by equation 76.25 [MHz]/37 = 2.06
[Mcycle/sec], the throughput of the single simulator is 2.06 [Mcycle/sec].

The implemented reactor module is 37-stage pipelined, and four reactor modules can be mounted
(on a Lotka system module). Thus, this simulator is able to execute 148 simulations simultaneously
in a clock. As the result, the maximum throughput of the Lotka system simulator is 304.88 [Mcy-
cle/sec]. It is about 105 times faster than the software implementation on AthlonXP 2800+ (operating
at 2.0 GHz).

ReCSiP is connected to a host PC with 64 bit/66 MHz PCI bus. If the Lotka system mod-
ule transfers to SRAM modules by ten output intervals, total throughput of output data is 365.856
[MByte/sec]. That is, each simulator outputs three 32bit data,X2, X3, andt in every cycle, and 148
simulations are executing at a cycle. The performance of the Lotka system module is 304.88[Mcy-
cle/sec]. If the output interval is assumed to be ten, data throughput becomes 365.856 [MByte/sec].
64 bit/66 MHz PCI bus has adequate bandwidth to transfer the amount of data derived above.

Chapter 4

Implementation of First Reaction Method on an
FPGA

4.1 Design concept to solve previous problems

4.1.1 Floating-point arithmetic

Any approximation and conversion are not preferred when a simulator is configured on an FPGA.
Therefore, arithmetic operations are configured faithfully to the original algorithm by single-precision
floating-point data. As floating-point arithmetic requires long clock cycles to acquire a result, it is
difficult to achieve high-throughput compared to execution on microprocessors whose operating fre-
quency is more than tenfold of an FPGA.

However, as shown in Section3.5, SSA includes loop-level and thread-level parallelism. So,
SSA can be overcome severalfold performance of a microprocessor by exploiting efficient use of
pipelining and parallel execution.

4.1.2 Scalability for large-scale biochemical models

The simulator is required to simulate various biochemical models without compiling and reconfigur-
ing hardware modules. Logic resource of the simulator is not so relevant with the size of models.

To approach this problem, simulation data is stored in embedded memories of an FPGA. For
example, Xilinx’s FPGA has distributed memories called BlockRAM which is 18bit× 1024words.
Amount of data depends on the size of the model with different population, reaction rate constants
and state-update vector. However, amount of logic resource can be kept stable by by storing these
data into combination of BlockRAMs. Through reaction type and species IDs of its reactants are also
stored into BlockRAMs, so re-compiling hardware module is not required even when target model
changes.

4.1.3 Multi-thread execution

As the hardware structure is fixed, the clock cycles to calculate a reaction cycle can be obtained
deterministically if model size is known.

As long as circuit size of the simulator does not exceed the capacity of an FPGA, multiple sim-
ulators can be configured for better performance. Simultaneous multiple simulations are legitimate
for Monte-Carlo simulation because the biochemical model have to be simulated thousands of times
with different random seed to acquire statistically-significant number of samples.

4. Implementation of First Reaction Method on an FPGA
4.2. Acceleration concept for FRM-FPGA 36

List 4.1: Core program in FRM

1 for(i=0;i<M;i++){
2 r = random();
3 p[i] = propensity(i, X);
4 tau[i] = (1/ln(r)) / a[i];
5 }
6 mu = min(tau);
7 update(mu, X);
8 t += tau[mu]];

Table 4.1: Variables in List.4.1
r uniform random number between (0, 1]
X integer array for state vectorX = {X0, · · ·XN}
a float array for propensitya = {a0, · · · aM}
tau float array for putative time of each reactionτ = {τ0, · · · τM}
mu reaction ID which occurs next

4.2 Acceleration concept for FRM-FPGA

This section depicts the implementation of FRM simulator module described in Section4.1. First of
all, a core part of FRM program-code is shown in List.4.1.

List. 4.1 is a whole code in a reaction cycle of FRM, and its variables are shown in Table4.1.
As there are no data dependency betweenith loop and (i + 1)th loop in List.4.1, all loops can be
executed in parallel. It means that loop calculation can be issued sequentially into the pipeline of a
hardware module to calculate the operation inside the loop.

Suppose a operation in the loop takesp clock cycles, the time for the loop calculation is (p ×
M) clock cycles when the calculation advances sequentially. By exploiting pipelining technique,
operation time is shortened to (kp+ M) clock cycles. Variablek is a pipeline pitch which is the
acceptance interval of the hardware module.

When FRM is executed on hardware operation, operations in the loop may be implemented as
pipelined hardware module or parallel execution on multiple hardware modules. These two ap-
proaches can be used simultaneously. We adopted the former approach, the pipelining technique. It
means that a simulation process is executed in a hardware module which operates a calculation in the
loop. We also adopted the latter approach as described before. Simultaneous multiple simulations
are legitimate for parameter searches and also for Monte-Carlo methods.

Fig. 4.1shows an example of data-flow of line 1 to 6 of List.4.1using three pipelined hardware
modules: propensity calculator,τ-calculator and “getting-minimum”. We assume these modules are
all pipelined and their pitch is one clock cycle. The intermediate data, the model state which is a list
of populations in this case, is stored in BlockRAM, and they are read in order according to reactants
in each reactants. The read numbers of species are thrown into the propensity calculator module to
obtain its propensitya j by Table2.3. The obtaineda j is directly input to theτ-calculator module.
The getting-minimum module receives the output of theτ-calculator module to obtain the minimum
valueτµ and its indexµ. Only getting-minimum module is not pipelined and it takes a pocket of time
as comparing values sequentially thrown into the module. The hardware module with this structure
can execute a calculation of the loop in List.4.1for (kp+ M) clock cycles.

After this section, details on actual implemented FRM hardware modules are explained.

4. Implementation of First Reaction Method on an FPGA
4.3. Implementation 37

Propensity
Calculator

i 0 1

τ-Calculator

τµ

GetMinimum

M

Random Number
Generator

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Fig. 4.1: Pipeline execution of List.4.1

4.3 Implementation

4.3.1 A structure of FRM-FPGA

Fig. 4.2 gives the overview of the FRM simulator module called FRM-FPGA. It has three identical
simulation units called FRM-UNITs that can operate in parallel. The number of FRM-UNITs is
determined by the capacity of FPGA’s logic resources. An FRM-UNIT has following three units:
(1) a functional unit (FU) for grouping some pipelined FP operation units, (2) a data unit (DU) for
intermediate simulation data storage, and (3) a controller unit (CU) controls data flow between DU
and FU. A DU contains two independent datasets named (DSA ,DSB) for different simulation tasks.
Therefore, FRM-FPGA executes totally six independent simulations in parallel.

Fig.4.3shows an example of data-flow in a FRM-UNIT when simulation for a small biochemical
model which defines five reactions(M = 5) is executed.

A calculation for a reaction cycle is progressed as following scheme: Phase numbers at each head
of the item in the list indicate the region in Fig.4.3.

Phase 1.CU has a Block-RAM as a ROM (Read-only memory) to store the reactants species IDs of
each reaction. ROM means that the data in the BlockRAM is not updated while a simulation
is running. CU reads out the species IDs of reactants fromR1 in ascendant order, and outputs
them to the DSA . As the number of reactants is up to two, one clock cycle is enough to read
data of a reaction using dual-port BlockRAM. After reading out the species ID ofRM, CU
switches the destination dataset to DSB from DSA and reads again fromR1.

Phase 2.DU reads out populations of reactants from appointed DS according to their IDs transferred
from CU. Populations are transferred to FU.

Phase 3.τ-unit in FU received populations calculatesτ js sequentially.µ-unit also searchesτ js to
obtainτµ. This computation is similar scheme with Fig.4.1.

Phase 4.µ andτµ are determined at next clock cycle after the moment whenτN is thrown intoµ-unit.
FU transfersτµ and update-vector ofµ to DU.

4. Implementation of First Reaction Method on an FPGA
4.3. Implementation 38

Fig. 4.2: Structure of FRM-FPGA

Phase 5.DU updates simulation timet and populationX according toτµ andνµ from FU.

Phase 6.After both computation of updating DSA and sending species IDs of reactants to DSB, CU
returns the control to Phase 1.

The simulation result is adjudicated to send back to the host-PC at the end of every reaction cycle. In
this implementation, simulation timet and all populations are transferred to memory in host-PC via
DMA operation.

Hardware implementation of FRM-FPGA is written in Verilog-HDL. Details of each module are
explained following subsections.

4.3.2 CU: Controller Unit

CU is a hardware module reads out reactants IDs of each reaction and transfers them to the FU to
calculateτ j at the beginning of the reaction cycle. A structure of CU given in Fig.4.4 which is
consisting of following components:

1. Reactants Table

2. Reaction Number: a register which is stored the number of reaction defined in the model

3. Reaction ID Counter: a counter which indicates a reaction ID to read out reactants

4. a flag to specify which data set is current process

A “Reactants Table” stores the Reactants of each reaction. As both theoretical maximum num-
bers of reaction and species are 1024 which can be expressed 10-bits, and reactants in a reaction is
consisting of up to two species, Reactants Table is composed by 10 bits entry with 20bit words of a
dual-port BlockRAM.

A “Reaction ID Counter” is used as an address to read out reactants from the reactants table. It is
in charge of incrementing indexµ after each reaction cycle. Both “Data Unit Selector” and “Reaction
Number” are flags for dataset assignment. The whole unit of one CU serves as pointers to the species
required in propensity calculation for reactionRj . In the beginning of each reaction cycle, indices of
species for allR1, · · ·RM are read from the Reactants Table. This operation is repeated sequentially
at every clock cycle until all the indices of species forM reactions are obtained, and they are given
to the Data Unit (DU) together with the index of reaction. Then the value of the flag switches and

4. Implementation of First Reaction Method on an FPGA
4.3. Implementation 39

M

FU

i 1 2 3 4 5

5 10 45 50 55 60

1 2 3 4 5

Cycle 1 Cycle 2

Thread 1 Thread 2

CU
In

Out

In

Out

In

Out

In

Out

In

Out

DSA

DSB

τ-UNIT

µ-UNIT

DU

Phase 1

Phase 3

Phase 2

Phase 5

Phase 4

Fig. 4.3: An example of pipeline execution

Fig. 4.4: Block diagram of Controller Unit

points the other dataset in DU. After updating all the number of species inDSA, DU reads an index
of species for the next reaction cycle.

Reactants of each reaction are stored into the Reactants Table. With the beginning of the reaction
cycle, reactants of reactions are read out every clock cycle. Read reactants data is transferred to DU.
After reading reactants fromR1 to RM twice for DSA and DSB, CU waits for the completion of state
update of DSA . After that, CU starts the reading in next reaction cycle.

Reading reactants takes 2M clock cycles because two simulation processes are run at a time.

4.3.3 DU: Data Unit

Fig. 4.5 shows the structure of a DU. DU stores intermediate data for two simulation threads, each
simulation thread includes as follows :

• population of speciesX, which is consist of dual-port BlockRAM with 32-bit×1024

• current simulation timet

4. Implementation of First Reaction Method on an FPGA
4.3. Implementation 40

Fig. 4.5: Block diagram of Data Unit

DU has two functions: (1) reading population and (2) updating population. In reading population
phase is indicated as “Phase 2” in Fig.4.3. The scheme of this phase is as follows:

1. Receiving dataset assignment flag and reactants from CU

2. Reading out populations from assigned dataset

3. Transfering populations to FU

In updating population phase is indicated as “Phase 5” in Fig.4.3. The scheme of this phase is
as follows:

1. Receiving a state-update vectorνµ and time gainτµ from the FU

2. Updating population according to the state-update vectorνµ

3. Updating current simulation timet by a floating-point adder

It takes 1 clock cycle to read population from a data set module, and it also takes 4 clock cycles
to update population after receivingνµ from µ-unit in FU. As simulation current timet is not used
following reaction cycles, it is updated with the calculation of next reaction cycle.

4.3.4 FU: Functional Unit

An FU is an calculation unit to obtainτ j from population of reactants in a reaction by floating-
point(FP) operations. It consists of two components: aτ-unit andµ-unit. τ-unit calculates the
putative timeτ j for the next occurrence ofRj . Meanwhile,µ-unit searches the minimum value and
its index fromτ . Fig. 4.6and Fig.4.7are the structures of these units.

4. Implementation of First Reaction Method on an FPGA
4.3. Implementation 41

Fig. 4.6: Structure ofτ-unit

(1) τ-unit

τ-unit calculatesτ j from reaction IDj and its molecular numbers (indicated as “Phase 3” in Fig.4.3).
It has a deeply pipelined structure for FP operations. The calculation is the same as Eq.2.10.
τ-unit has two types of memory: a “Reaction Type Table” and a “Reaction Constant Table”.

Data in the former memory is used for selecting a calculation method (reaction type) for obtaining
the propensity for reaction. Three methods are prepared to deal with target biochemical systems
which are bimolecular reaction or under. The latter memory stores stochastic reaction rate constants
c. Combinatorial number (e.g.X1×X2) becomes an integer value, since molecular numbers are given
as integers. After combinatorial numbers are calculated by an internal integer multiplier (IMULT),
they are transformed into FP format through an “INTtoFLOAT” transformation unit. Because there
are some pipeline latency in floating operations,τ-unit utilizes a shift register for reading out the
value j simultaneously withτ j .

It takes 42 clock cycles to calculateτ j after reading molecular numbers, but high throughput is
obtained by filling up the pipelines in FU and executing two data sets in parallel.

The term ln(1/r) in Eq.2.10is independent from the calculation for propensity. Therefore, there
is a FIFO which buffers values of ln(1/r) to cut down the calculation time. After dequeuing FIFO,
τ-unit asserts a request flag to generate next random number to calculate ln(1/r) which is enqueued
the FIFO. This scheme can use random cycle efficiently, while it makes the verification of the result
easy.

The random number generator is required to generate 26-bit random bit every clock cycle. In this
implementation, 167-bit of Lenear Feedback Shift Register (LFSR) is used for the random number
generator with M-sequence. Even though RPG100 equipped on ReCSiP2-board, the physical random
number generator, can also be used, it may be utilize to replace a part of the random sequence because
the generation frequency is 250 kbps the maximum.

Important values in stochastic simulatoin are the state after certain simulation time or the mar-
gin of fluctuation for population. The pseudo random number generation method which does not
show obvious linearity is said that it is sufficient for stochastic simulation. Various studies for ran-
dom number generator on an FPGA make advance such as Merssenne-Twister algorithm and other
hardware-dedicated algorithm [47, 48]. The random number generator inτ-unit can be superseded

4. Implementation of First Reaction Method on an FPGA
4.3. Implementation 42

Fig. 4.7: Structure ofµ-unit

Table 4.2: Logic resouces and maximum operating frequencies for FP arithmetic

latency Slices Multiplier RAM [MHz]
Addr/Subtracter 6 663 - - 134.6
Multiplier 8 246 4 - 196.6
Divider 17 1542 - - 106.7
Comparator 1 48 - - 119.2
Logarithmic function 32 2276 6 13 109.2

by hardware modules with other generation algorithms.

(2) µ-unit

µ-unit searches the minimum value from data stream inputed every clock cycle, and output the min-
imum value and its index of the stream.
µ-unit includes floating-point comparator (FCOMP) and a register to hold the reaction IDj, and

“State Update Table” which is stored state-update vectorν j for each reaction. FCOMP is a simple
comparator which outputs smaller value and a flag which indicates the change of output value with
the data output before one clock cycle from a couple of input value.

The following is the mechanism for searching the minimum value ofτ j within τ = (τ1, τ2, · · · , τM).
First, theµ-unit stores values ofτ j sequentially given fromτ-unit. Then with an internal FP com-
parator (FCOMP), the minimum valueτµ is selected betweenτ1 andτM. Note that this operation
takesM clock cycles. Finally,µ-unit outputsτµ and state-change vectorνµ from to DU.

4.3.5 Floating-point arithmetic unit

This implementation utilizes an extended data format for floating-point values. It is based on the
IEEE-754 standard for single-precision floating point, but has extended 3 bits for rounding. Thus,
floating point values are not approximated within each operations, but maintains the “round” bits.
Table4.2shows the logic resouces and maximum operating frequencies for floating-point arithmetic
which are used in FRM-UNIT. The arithmetics are written in Verilog-HDL, the synthesis and place
& route are done by Xilinx ISE-8.1i with the target device for XC2VP70-5 which is equipped on the
RecSiP2-board.

The logarithmic unit in FU calculates logarithmic number ln(x) of the inputx by second order
interpolation. The random number generator is implemented as 167-bit LFSR (Linear Feedback

4. Implementation of First Reaction Method on an FPGA
4.4. Evaluation 43

Shift Register), which is capable of producing 26-bit random number per clock cycle based on M-
sequence.

FP format random number between [0,1) is generated by following procedure. First, a uniform
random numberr ′ between [1,2) is generated by combining a positive sign bit of 0, 127 as exponen-
tial bits and 26 random bits from LFSR. Finally, the random number is obtained by subtracting 1.0
from r ′.

4.3.6 Computational time for a reaction cycle on FRM-UNIT

In this subsection, a compuational time for a reaction cycle on FPM-UNIT is explained. As shown in
Fig. 4.3, Phase 1, Phase 2, and Phase 4 take 2M clock cycles, Phase 3 takes 42 clock cycles to output
the result from input, and Phase 5 takes four clock cycles. Phase 1, 2, and 4 are overlapped to advance
calculation. IfM is less than 46, that is the total time of Phase 3 and phase 5, two simulation threads
can be executed in an execution time of single simulation thread. Therefore, the case ofM ≤ 46,
the computational time for a reaction cycle isM + 46 clock cycles. On the other hand, the case of
M ≥ 47, even though population update of DSA is finished, calculation of next reaction cycle can not
start till output reactants for DSB. In simulation forM ≥ 47 biochemical system, the computational
time for a reaction cycle is 2M + 2 clock cycles including adjudication on the transfer time and state
to host PC.

Although time for a reaction cycle is longer than only one simulation thread whenM is larger
then 47, the size of recent biochemical model for actual usecase may be betweenM = 50 and
M = 100. As the rate of active and inactive of pipeline for FU are almost same in the simulation of
such models, it has the advantage of execution by two threads execution to fill blank of the pipeline.

On the other hand, more than two threads may be executed in parallel whenM is small. However,
multithreading on FPGA can not be very effective to achieve high throughput compared to multipro-
cessor which can mark very high performance in very small model. Therefore, we fixed the number
of thread executed on a FRM-UNIT.

It may be effective to cut down the calculation time by the FRM-UNIT executes one simulation
thread when the main target of the biochemical model is larger than recent models.

4.4 Evaluation

4.4.1 Result of resource utilization

FRM-FPGA module was written in Verilog-HDL, synthesized, and place & routed with Xilinx
ISE7.1i. The target device is XC2VP70-5FF1517 equipped on the ReCSiP2-board. Table4.3shows
the component resources for the FRM-FPGA module and its submodules. This result indicates that
the FPGA of ReCSiP2-board is capable for implementing FRM-FPGA with three FRM-UNITs,
along with interfaces for connecting host PC and PCI bus. This FRM-FPGA can execute 6 (= 2× 3)
simulations in parallel.

4.4.2 Performance evaluation

(1) Benchmark biochemical systems

Performance of FRM-FPGA was evaluated by three biochemical benchmark programs: LTS (Lotka
System), TIS (Totally Independent System) and LCS (Linear Chain System). LTS [16] is a very
small scale system typically chosen as benchmarks of stochastic simulators. TIS and LCS [19] are
systems whose number of reactionsN is variabled. Further details are described in each reference.

4. Implementation of First Reaction Method on an FPGA
4.4. Evaluation 44

Table 4.3: Resource Utilization
Block Freq.

Module Slices Mult. RAM [MHz]

FU 7360(22.24%) 26 8 106.43
DU 992 (2.99%) - 8 106.32
CU 60 (0.18%) - 2 143.88
FRM-UNIT
(≃ FU+DU+CU) 8166(24.68%) 26 18 106.56
FRM-FPGA
(≃ 3 FRM-UNITs) 24496(74.03%) 78 54 106.29

 980

 985

 990

 995

 1000

 1005

 1010

 1015

 1020

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

po
pu

la
tio

n
le

ve
l

time

X2
X3

Fig. 4.8: Average populations on FRM-UNIT

 980

 985

 990

 995

 1000

 1005

 1010

 1015

 1020

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

po
pu

la
tio

n
le

ve
l

time

X2
X3

Fig. 4.9: Average populations on FRM-SW

Throughput of FRM-FPGA versus microprocessors with a program code in C++ (indicated as
FRM-SW) was evaluated. The program adopts Mersenne-Twister algorithm for generation of random
numbers.

It is quite difficult to determine the barometers for “accuracy” in stochastic simulation, but this
paper defines the validity of simulation results of FRM-FPGA by smallness of disparity from FRM-
SW simulation result. Fig.4.8and Fig.4.9represent the averaged trajectories of LTS of FRM-FPGA
and FRM-SW, respectively. LTS is often observed as a steady state in ODE-based simulation, but
values ofX2 andX3 oscillate with stochastic simulators and each result depicts completely different
trajectories (due to the use of different random generation algorithm and random seed). Yet, the
trajectories ofX2 andX3 after 1000-times execution stays within the range of 1000± 1.5% in both
figures, indicating that FRM-FPGA generates reasonable results with regards to software execution.

(2) Performance evaluation

Throughput of FRM-FPGA was estimated by assuming operational frequency of 106.29 MHz, with
regards to the result of placement and routing. FRM-SW was compiled with gcc3.3.5(-O3) at
Xeon 2.80 GHz with 4.0 GB RAM, and the throughput was evaluated in Linux2.4.31 environment.
Fig. 4.10and Fig.4.11compare the throughput versusN.

Execution time of FRM-UNIT is proportional to system size isN (N + 46 clock cycles when
N ≤ 44, or 2N + 2 whenN ≥ 45). This is because FRM-UNIT obtains propensity on a fixed
circuit capable of up to the second order reaction. Also, deeply pipelined structure of FU may
cover up the latency for FP operations, attaining high-throughput versus FRM-SW even with large-
scale biochemical systems. As the result, because TIS is the simplest biochemical system definable,

4. Implementation of First Reaction Method on an FPGA
4.5. Chapter summary 45

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

T
hr

ou
gh

pu
t

M

FRM-SW(TIS)

FRM-SW(LCS)

FRM-FPGA(TIS/LCS)

[M
cy

cl
es

/s
ec

]

Fig. 4.10: Throughput gain

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000
M

TIS

LCS

[F
P

G
A

/S
W

]
T

hr
ou

gh
pu

t

Fig. 4.11: Gain ratio

Fig.4.11shows that FRM-FPGA achieves about 80-fold speedup compared with software execution.

4.5 Chapter summary

In this chapter, we proposed a methodology for implementing an SSA algorithm called First Reaction
Method (FRM). Processes in the algorithm is simple, and has high degree of loop- and data-level
parallelism. Thus, the hardware design was fixed, and data flow was statically scheduled to enhance
performance by consecutively injecting data into deep pipelines of floating point units. Arithmetic
operations were configured faithfully to the original algorithm by single-precision floating-point data.
We validated that the implemented hardware can treat small-scale models well.

Overall, the design achieved more than 80-fold throughput compared to software execution on
Xeon 2.80 GHz, with large-scale biochemical systems for up to 1023 reactions.

Chapter 5

Implementation of Next Reaction Method on an
FPGA

This chapter explains an implementation of NRM simulator module.

5.1 Design of NRM on an FPGA

5.1.1 Analysis of NRM

As a preliminary of implementation of NRM simulator module, performances of FRM and NRM
in C++ language by microprocessors whose environment is shown in Table5.1 (afterward, they are
called FRM-SW and NRM-SW, respectively) are compared with the performance of FRM-FPGA
discussed in Section4.2 for various size of models. In this evaluation, we used virtual models in
whichn set of the Lotka system(M = 4,N = 4) is defined. Fig.5.1shows results within the range of
M ≤ 1024 as realistic size of biochemical models.n sets of the Lotka model are described asnLotka
in Fig. 5.1.

As shown in Fig.5.1, FRM-FPGA outperforms throughput about 6.64 times in 1Lotka and about
40 times in more then 16Lotka, compared to the microprocessor. However, FRM becomes less
efficient than NRM because FRM does not use the dependency graph to reduce the number of cal-
culation in a reaction cycle. Therefore, FRM is the algorithm under no circumstance to simulate
for models which defines large number of reactions such as more than 32Lotka. As results between
FRM and NRM are proved statistically same, FRM-FPGA is hard to say that it is accelerator for
large biochemical simulations.

Recently, although some SSAs which are said that they are faster than NRM are proposed, NRM
on an FPGA (which is written as NRM-FPGA afterward) is implemented to simulate large biochem-
ical models because NRM indicates the most efficient time complexity.

Number of function calls were also obtained and are shown in Fig.5.2. n sets of Heat-Shock
Response (nHSR) Model (1HSR :M = 61，N = 28) was used, and set number of reactions within
the range ofM ≤ 1000.

The profile was taken when 2× 106 reaction cycles were executed. As we have already shown in

Table 5.1: Execution environment for C++ program code

CPU Intel Core 2 Quad Q6600 (2.40 GHz)
Memory 3.5 GB (4.0 GB on board)
OS Linux 2.6.22-14 (x86-32bit)
Compiler gcc 4.1.3 (-O3) 1 core

5. Implementation of Next Reaction Method on an FPGA
5.1. Design of NRM on an FPGA 47

Fig. 5.1: Calculation time and its breakout for the Lotka model in NRM

Fig. 5.2, calculation time displays mildly increases and is linear to the number of reactionsM. The
increase is due to the update of the binary tree in IPQ.

Computational time of NRM is also influenced by the length of list of DG. The number of ex-
ecuting innermost loop is linear to the number of reactions listed in DG. Also, data for frequently-
occurred reactions in HSR model concentrates at the root node of the tree. Note that reactions are
likely to occur when there is a big population of molecules involved in it or when the value of reac-
tion constant is large. Propensity of such reactions are also large, and putative time is likely to be
the nearest value from the present time. Thus, they are apt to stay at the root of the tree. Number of
functions calls for US decreases as number of reaction increases. Thus, we can find that length of
DG’s list for HSR model is relatively short.

5.1.2 Analysis of NRM execution unit using an FPGA

As shown in Fig.5.3, large proportion of the execution time is computation of reaction cycles. Mem-
ory regions allocated during runtime are as small as approximatelyM×24 KBytes (M×20 KBytes for
storing intermediate populations andM × 4 KBytes for parameters). Based on these characteristics,
we will discuss the methodology for acceleration.

First, the whole computation is done on an FPGA, and no interaction will be performed with host
PCs except for sending or receiving initial values and output results. Because computation of each
reaction cycles simple enough to be done with an FPGA, communication overhead between a host
PC would obviously be dominant among the execution time.

Second, throughput can be improved with multithreading by exploiting thread-level parallelism
of NRM. Hereafter, we will refer a hardware module as a “thread module”, which computes one
thread of NRM according to the flowchart shown in Fig.2.9 and stores its intermediate status. Ca-
pacity of BlockRAMs are large enough to store the whole simulation data, we will form a distributed
memory system with different data types, and allow parallel access to them.

Throughput of mathematical operation is often improved by throwing data consecutively into
deeply-pipelined arithmetic cores. In general, floating-point units consume large logic capacity, we

5. Implementation of Next Reaction Method on an FPGA
5.1. Design of NRM on an FPGA 48

Fig. 5.2: Profiles for HSR model in NRM-SW

can streamline by allowing several thread modules share one arithmetic core. Hereafter, we will refer
to these arithmetic cores and their I/Os as “shared modules”.

Types of arithmetic operation, its occurrence and timing vary among selected reactions. Thus,
pipeline efficiency is degraded when timing of data transfers between modules are statically sched-
uled. Consequently, we can eliminate pipeline vacancy by interconnecting shared modules and thread
module with some network mechanism, and appropriately sequencing requirements of each thread
modules. The structure of interconnects are modifiable, so number of thread modules can be adjusted
according to the capacity of FPGA platform.

Fig. 5.4shows the interconnection of each modules. Each thread module has data necessary for
one simulation thread of NRM. It appropriately transfers data to the shared modules as simulation
proceeds. There are five different types of shared modules: modules with unmodified parameter
tables (U1 and U2), and computation modules (U3, U4, and U5). They receive input as shown in
Fig. 5.4and return their results.

Main concern of this system is the principle of interconnection between modules. The simplest
method is to connect modules with multiplexers (MUX), and we firstly tested the efficiency of this
structure [49]. Its major problem was that multiplexers could not latch signals internally. Thus, input,
control and output process had to be done in one clock cycle, which seriously prolonged the latency
that it negated the efficiency obtained by multithreading.

Next, Network-on-Chip (NoC) method was adopted [50]. Latency was moderate with hierarchi-
cal network between shared and thread modules. However, output port was configured with Block-
RAMs, and crossbars were used as switches. Moreover, due to the nature of NoCs, there were paths
between modules without any communication. Overall, this type achieved poor performance over
logic utilization.

Third structure we adopted is Distributor-Concentrator type which is described in Section5.2.5.
With original network structure, we achieved high performance over logic utilization.

5. Implementation of Next Reaction Method on an FPGA
5.2. Implementation of NRM execution system 49

Fig. 5.3: Number of function call in NRM

5.2 Implementation of NRM execution system

This section describes the detail of structures and implementation of thread modules, shared modules
and interconnects in the NRM execution system. Each module was written in Verilog-HDL. Float-
ing point arithmetic units and memories were designed by utilizing single-precision floating-point
operation units and BlockRAMs produced by Xilinx’s CORE generator.

5.2.1 Data transfer protocol between modules

Each module communicates by sending and receiving data packets. Each flit is 32bit wide, and one
packet consists of a header flit and pay-load flits which is more than one flit long. Header flit stores
the details of arithmetic processes and routing sequence. Pay-load flits contain simulation data which
will be the input of shared modules. Source-routing mechanism is adopted. Note that superscription
and interruption by trailing packets are avoided by several inter-module control signals and transfer
control using FIFOs.

5.2.2 Structure of thread modules

Thread modules possess intermediate data of one simulation thread, and throw data to shared modules
according to the sequence shown in Fig.2.9.

Fig. 5.5 is a block diagram of thread modules. Intermediate data stored in the module are status
of the biochemical model (time and population of molecules), IPQ and propensity. The memory was
configured with Dual-port BlockRAM that stores up to 1024 words. This means that the system is
capable of simulating a models whose parameters areM = 1023,N = 1024. Case ofM = 1024 is
incapable because IPQ is a binary tree and we cannot use a field whose address is zero. IPQ has a 10-
bits×1024 index table which stores pointer of each reaction within a binary tree and a 42-bits×1024
binary tree that stores data in a pair of reaction ID number and putative time. IPQ has a controller in

5. Implementation of Next Reaction Method on an FPGA
5.2. Implementation of NRM execution system 50

Thread Module 3
Thread Module 2

Thread Module 1
1. State
2. IPQ
3. Propensity

stores intermediate data
for a simulation thread

Data Transfer Network 1
controls order of data flows
transfers data packets to
 shared modules

Data Transfer Network 2
controls order of data packet
transfers data packets to
 thread modules

U1 : state-update vector
Input : µ (index of reaction)
Output : ν (update vector)

U2 : Dependency Graph
Input : µ (index of reaction)
Output : j, Sa[j], Sb[j]
(index of reaction, index of reactants)

U3 : Propensity Calculator
Input : Xa[j], Xb[j]
 (number of reactants species)
Output : a[j] (propensity)

U4 : τ−Calculator
Input : a[j], t
 (propensity, simulation time)

Output : τ [j] (new simulation time)

U5 : τ−Modificator
Input : aold[j], anew[j], τold[j], t
Output : τnew[j]
 (modified simulation time)

Shared Modules

Thread Modules

Fig. 5.4: Module connection diagram in NRM execution system

charge of reading data and updating values. Magnitude correlation of the binary tree is maintained
by comparison and exchange nodes completed within five clock cycles.

Thread module has a receiver FIFO to store packets from other modules and a sending controller.
It also has an external I/O port exclusive for communication with each BlockRAMs, and is used for
writing initial values and reading output values.

5.2.3 Principles of thread modules

Packet controller in a thread module generates packets for control of arithmetic operations and com-
munication, and sends data to shared modules. Received data are stored in FIFOs. Packet controller
is an 8-state machine, which reads or writes value into FIFOs and memories and processes according
to appropriate sequence.

Fig. 5.6 shows the relationships between state transition of packet controllers and sender or re-
ceiver packets in one reaction cycle. The ovals indicate the status of packet controller, and the
solar-marks are status of sender packets. Input of each edge indicates the types of receiver packets
or certain conditions. The calculation scheme is as follows:

1. Calculation of each reaction begins from “START”, and proceeds according to the flow chart
shown in Fig.5.6

2. U1 and U2 are processed in parallel, so reaction ID number is read from the root node of IPQ’s
binary tree, and packets are generated and sent consecutively to U1 and U2

3. Packets sent to each shared modules have pay-loads whose values are shown in “Input:” in
Fig. 2.9. Afterwards, the status becomes “IDLE” and, waits until data is pushed into a receiver
FIFO.

4. Status becomes “FETCH” when data is pushed into the FIFO, and popped a packet.

5. Status transits to “Update State” if the source of the packet is U1, and model’s status (or
populations) is updated according to the data-flits in pay-load.

5. Implementation of Next Reaction Method on an FPGA
5.2. Implementation of NRM execution system 51

IREQ IRDY DIN

Packet
Controller

DOUT

Propensity Table Indexed Priority Queue

2

WE FULL

32
OREQ ORDY

2 32

EMPRE

Operation

32x1024
BlockRAM

42x1024
BlockRAM

Species Table

32x1024
BlockRAM

+

Input FIFO
32bits x 512words

Initial DINState DOUT

10x1024
BlockRAM

Fig. 5.5: Structure of the threaded module

Fig. 5.6: State transition in the packet controller and send/receive packet in a reaction cycle

6. Likewise, if the packet is from “U2”, status becomes “Read State”. And sends packet to U3 if
process in U1 is complete. If not, packet is sent to itself (L: loop packet), and waits until data
for U3 is ready.

7. Data of U1 packet has a number of reactions(including evolution reactions) whose putative
time must be updated, and identical number of packet is sent back as U2 packet.

8. If U3 or loop packet was read out, the status becomes “Update Propensity” and updates propen-
sity of corresponding reaction. Note that process depends on values ofa j,old，a j,new，τ j,old,
and selects whether the system should send packet to U4, U5, or update IPQ’s binary tree.

9. One simulation cycle ends when the system reaches certain simulation time or has gone
through “Update IPQ”. At this point, reaction number at the root of IPQ’s binary tree is the
reaction that is going to occur at the next cycle, and its putative time will be the next system
time.

5. Implementation of Next Reaction Method on an FPGA
5.2. Implementation of NRM execution system 52

Fig. 5.7: Structure of shared module U2 (Dependency Graph) with a set of I/O port

5.2.4 Principles of shared modules

Shared module consists of I/O ports, arithmetic cores and an arbiter. As described in Section5.1.2,
there are five types of arithmetic cores: two “data-memory” types (U1 and U2) and three “computa-
tion” types (U3, U4, and U5). There are constantly only one set of I/O ports in a thread module, but
its number of shared modules are variable according to the form of interconnect and the number of
thread modules. Fig.5.7and Fig.5.8show examples of U2 with one set of I/O port and U4 with two
sets. An Input port of a shared module stores receiver packet into its internal register, and requests
a property to use an arithmetic core to the arbiter. An arbiter is in charge of selecting requests from
input ports, and sends data of pay-loads from certain input to an arithmetic core. Arithmetic cores
process input data according to Fig.5.4. Output port stores header flit from the input port and output
results from an arithmetic core into its internal FIFO. The FIFO generates a packet and sends back
to the owner thread module.

“Data-memory” type of arithmetic cores receive reaction ID and generate a variable-length list
of update status vector (U1) or ID number of reactant molecules (U2). As it is a two-dimensional
array, arithmetic core is a two-stage hierarchical structure that connects data and pointer memories,
as shown in Fig.5.7. First, Reaction ID is used an address of pointer memory to read the number
of data and header address of data memory. Based on this, a list is read from the data memory.
Meanwhile, the arbiter does not allocate property to use the core to other modules. At the output
port, one sending packet is generated only with one data in the list in order to reduce the waiting time
due to collision in the interconnect.

On the other hand, “computation” type of arithmetic cores is pipelined, and can process con-
secutive requests per clock cycle. U4 shown in Fig.5.8 performs a single-precision floating point
computation based on Eq.2.10. Random numbers in the range of (0, 1) are generated with an M-
sequence algorithm using a Linear Feedback Shift Register (LFSR). First, random numbers between
(1, 2) is generated from uniform random numbers, and then value 1.0 is subtracted. Logarithm num-
bers with base of natural logarithm “e” is calculated with two-dimensional interpolation. Random
numbers are generated independently from data of biochemical models, so they can be stored in FI-
FOs and used when they are necessary. Random number generator modules are interchangeable as
occasion arises. U3 and U5 were also implemented based on this guideline.

Size of input packet to U4 is three flits. Thus, pipeline utility is 33% at most when there is only

5. Implementation of Next Reaction Method on an FPGA
5.2. Implementation of NRM execution system 53

Fig. 5.8: Structure of shared module U4 (calculatesτ) with two sets of I/O port

one set of I/O port. This is improved by simply adding more I/O ports so that waiting time at the
input can be reduced. On the other hand, U1 and U2 are not pipeline-based, so waiting time cannot
be improved by increasing the number of I/O ports. As shown in Fig.2.9, U1 and U2 are only used
once per reaction cycle. Consequently, waiting time at these inputs does not have large influence on
this NRM system, but can be improved by configuring multiple sets of U1 and U2.

5.2.5 Principles of interconnections

Interconnection of NRM system connects thread modules and shared modules, and also controls
packet transfer. There are two types of controller modules in the interconnect: a “Concentrator”
which aggregates multiple inputs and controls their sequence, and a “Distributor” which sends data
to appropriate output according to the information given by input header flit. Data flow of NRM
system is rather simple; packets are sent from each thread module, and computation results are given
from shared modules in return. Thus, these two modules play adequate roles in this interconnection
system.

Fig. 5.9 shows block diagrams of a 4-port Concentrator and a Distributor. Number of ports in
both modules are variable. Each input port owns 34-bit×2 FIFOs, and suppresses wiring delay likely
to be caused by multiple-stage interconnection.

As mentioned before, Concentrator is in charge of controlling sending requests from multiple
input ports, and organizing them as a single output. Arbiters refers to controlling information from
each input ports, and establishes a data transfer signal line to the output port. Distributor selects an
output port based on routing information in the header flit, and send the packet.

5.2.6 Organization of NRM execution system

NRM execution system is configured by multiple thread modules and shared modules communicat-
ing via an interconnection. Fig.5.10shows an example with four thread modules.

5. Implementation of Next Reaction Method on an FPGA
5.3. Evaluation 54

Fig. 5.9: Examples of 4-port interconnection modules

The system first writes parameters of a target biochemical model to shared modules, and initial
values of each thread are stored into independent thread modules. Simulation proceeds by repeating
the sequences described in Section5.2.3. Intermediate status is dumped per time interval configured
before the simulation.

Hereafter, an NRM execution system as shown in Fig.5.10with p thread modules and one set of
output port is called a “Tp execution system”. A pair of a Concentrator and a Distributor is used for
connecting the shared modules. Analysis of packet congestion in Tp execution system is fairly easy,
and the system can be regularly extended. This section evaluates area and performance of the system
by modifying the value ofp.

Tp execution system is a reasonable structure when the utility of each shared module is equally
likely, but I/O ports of a shared module easily becomes a bottleneck when its utility is high. Fig.5.3
shows that frequency in use of U3 is obviously high. Thus, we selected a T16 execution system
whose degradation of operational frequency is in an allowable range and U3 distinctively being the
communication bottleneck, and designed a T16C execution system whose portion of interconnection
was modified. T16C system uses a U3C module (U3 module with four I/O ports) and each ports
are connected with four threaded modules via 4-port Concentrator and Distributors. This design
improves pipeline efficiency of U3’s arithmetic core.

5.3 Evaluation

This section shows the evaluation of NRM execution system. The target system is an FPGA eval-
uation board designed by Tokyo Electron Device (TB-5V-LX110T-PCIEXP [51], On board FPGA:
XC5VLX110T-FF1136). Synthesis, placement and routing was done by Xilinx ISE8.2i, and perfor-
mance was evaluated by RTL simulation.

5.3.1 Module area

Table5.2 shows areas and operating frequencies of implemented modules, Based on this, we will
estimate the number of thread modules configurable on FPGAs. Thread module consumes approxi-
mately 2.1%(= 1283/61920× 100) of LUTs, and 4.1% of BlockRAMs. Hence, the maximum num-

5. Implementation of Next Reaction Method on an FPGA
5.3. Evaluation 55

Fig. 5.10: Structure of NRM execution system with 4 threaded modules

Table 5.2: Area and operating frequency of each module

Thread U1 U2 U3 U4 U5 U3C
Registers 679 161 215 1028 7231 2857 1620
LUTs 1283 348 384 993 5154 2111 1774
BlockRAM/FIFO 6 5 7 4 6 2 9
DSP48Es 0 0 0 5 14 5 5
Max. Delay[ns] 6.40 5.44 5.42 5.73 5.84 4.29 5.73
Op. Freq.[MHz] 156.30 183.82 184.54 174.43 171.38 233.10 174.43

⋆ XC5VLX110T-FF1136 : Slice 69120 : LUTs 69120 : BlockRAM/FIFO 148 : DSP48E 64

ber of thread modules is limited by the number of BlockRAMs on a target FPGA. U1 and U2 uses
many BlockRAMs for storing model parameters, but consumes less logic resource compared to other
modules because their internal control logics are relatively simple. On the other hand, U3, U4 and
U4 consumes considerable amount of logic resource because they mainly consist of floating-point
arithmetic cores.

5.3.2 Area of NRM execution system

Area and operational frequency of entire NRM execution system are shown in and Table5.3 and
Fig. 5.11, respectively. As shown in Fig.5.11, target FPGA is capable of holding T20 system.
Table5.3 indicates that systems under T8 are capable to keep their operational frequency high, and
their critical paths are within thread modules. On the other hand, critical paths of T16, T20 and
T16C execution system lies in Concentrators and Distributors because of their increasing number
of ports. These systems consume many LUTs for their interconnections. For example, there is
approximately 2.24% increase of slice registers between T16 and T16C, while number of LUT and
operational frequency are equally likely. Computational type of shared modules can increase its
pipeline efficiency without much increase of area by owning several sets of I/O ports like U3C,

5. Implementation of Next Reaction Method on an FPGA
5.3. Evaluation 56

Fig. 5.11: Resource utilization of NRM execution system

because thread modules connected to each I/O ports can be equally distributed.

5.3.3 Performance evaluation

We will evaluate each NRM execution system with regards to number of thread modules and number
of reactions. For this aim, an RTL simulation withn sets of HSR system (introduced in Section5.1.1)
were run for 50000 reaction cycles. Hereafter, we will refer to this model asnHSR. Fig.5.12shows
average clock cycles for simulating one reaction cycle, and Fig.5.13 is average waiting time for
each type of data packets to send one flit to an adjacent module. Fig.5.14is pipeline efficiency of
arithmetic cores in each shared module.

First, we will discuss the influence of thread modules and performance. As Fig.5.12indicates,
number of clock cycles increase when number of thread module increases. T16 and T20 are distinc-
tive cases; they are due to waiting time of U3 ad shown in Fig.5.12. Pipeline efficiency of arithmetic
cores is proportional to the number of thread modules as Fig.5.14indicates, but it saturates at 33.3%
for U3 in case of T16 and T20. Operational rate of U3C with four sets of I/O ports is 100%, so T16C
design was able to resolve the bottleneck at U3.

Next, we will discuss the relationships between number of reactions and clock cycles. As shown
in Fig. 5.3, number of nodes in IPQ increases as number of HSR model increases. Meanwhile, it
reduces the number of function calls for U3 and U5.

Table 5.3: Operation frequency of NRM execution system

Execution system Operational frequency[MHz]
T1 156.30
T2 156.30
T4 156.30
T8 155.62
T16 141.30
T20 120.69
T16C 138.60

5. Implementation of Next Reaction Method on an FPGA
5.3. Evaluation 57

Fig. 5.12: Average clock cycles to calculate a reaction cycle

Fig. 5.13: Average waiting time to transfer for each packet

In addition to interruption and route distribution are not supported, each reaction cycle starts
when all processes of previous reaction cycle is completed. Thus, whole computational performance
is limited when only a portion of interconnection has a bottleneck. Consequently, it is our next
work to investigate optimal interconnection by inspecting the tradeoff between pipeline efficiency
and transfer waiting time.

5.3.4 Throughput

Fig. 5.15 shows throughput of each execution system and result of the NRM algorithm runs on a
general-purpose processor whose execution environment is shown in Table5.1. Throughput of DM
by Stochkit is also indicated for reference. Throughput of FPGA system was obtained by divid-
ing operational frequency with clock cycles required for simulating one reaction cycle (shown in
Fig. 5.12) and multiplying the number of thread modules. The system was operated with 150 MHz,
135 MHz and 120 MHz for execution system smaller than T8, 16, and T16C, respectively.

There is a linear increase of throughput between T1 and T8. However, Fig.5.15 indicates that
throughput of T20 system is inferior to that of T16 due to the drop of operational frequency. On the

5. Implementation of Next Reaction Method on an FPGA
5.3. Evaluation 58

Fig. 5.14: Operation rate for each functional core (unit: %)

Fig. 5.15: Comparison for throughput (unit: Mcycles/sec)

other hand, T16C resolves the bottleneck of U3, as mentioned before.
In case of a microprocessor, Fig.5.2 shows that access time for IPQ increases with the number

of reactions. On the other hand, NRM tolerates the increase in number of reactions. For example,
throughput is improved for HSR model with larger number of reactions. This may be because fre-
quently occurred reactions in multiple HSR are concentrated around the root node, the rebuilding
time is shorter than 1HSR.

FPGAs used in this work can configure two T8 execution system. They are independent and can
be run in parallel, so this doubles the throughput and is better than T16C. This result suggests our
next work, which is to improve the efficiency of single execution system, as well as availability of
multiple execution systems on a single FPGA.

Best performance of single execution unit was provided by T16C, and approximately 4.2 to 5.4
time higher throughput was obtained compared to NRM run on the microprocessor. Performance gap
between execution on microprocessors increase with number of reactions. These evaluation results
proved that FPGA implementation presented in this work maintains a scalability for a biochemical
model with up to 1023 reactions.

5. Implementation of Next Reaction Method on an FPGA
5.4. Review 59

Fig. 5.16: Throughput of descripted hardware (unit: Mcycles/sec)

5.4 Review

Fig. 5.16 shows performances of FRM and NRM run on both implemented hardware and soft-
ware. The throughput was measured with Lotka system and HSR model with various model size.
Fig. 5.16contains performances of FRM-FPGA, FRM-SW and NRM-SW for Lotka systems, and
performances of NRM-FPGA and NRM-SW for HSR models. Software programs are executed on
environments shown in Table5.1.

With software, as shown in Fig.5.16, NRM-SW exhibits different performance curves for Lotka
systems and HSR models depending on its forms. Although the number of reaction of 16Lotka
(M = 64) and 1HSR (M = 61) is almost same, the throughput of 1Lotka is 30% higher than 1HSR.
The average weighted degree, which was proposed by Cao [19] is aboutDLotka = 3.0 for Lotka
systems andDHSR = 8.79 for HSR model. The barometerD is calculated by Eq.5.1:

D =
Σdiki

Σki
(5.1)

wheredi is the number of reactions affected by theith reaction, andki is the number of times that
the ith reaction is fired during a simulation. This difference is obviously caused by the number of
calculation for modifyingτ j .

As explained in Section5.1.1, the throughput of FRM-FPGA becomes inferior to NRM-SW
when the number of reaction is larger thanM = 128. However, NRM-FPGA always outperforms
NRM-SW for approximately 4.2 to 5.4 times with HSR models. Additionally, the difference between
NRM-FPGA and NRM-SW also expands according to the number of sets of HSR. On the other hand,
FRM-FPGA may exceed NRM-FPGA when the size of the model is less thanM = 128

Therefore, we perceived the condition to select the two algorithms when we apply FPGA for the
stochastic biochemical simulation. That is, FRM-FPGA should be applied when the model is small,
and performs well when number of reaction defined is less thanM = 128. NRM-FPGA should be
applied to larger models.

5. Implementation of Next Reaction Method on an FPGA
5.5. Chapter summary 60

5.5 Chapter summary

This chapter presented an implementation of SSA execution system applying an algorithm called
Next Reaction Method (NRM). The algorithm adopts two distinctive data structures: a binary tree
in an Indexed Priority Que (IPQ) and a Dependency Graph (DG). They are used for improving
computational efficiency over FRM for large-scale models, but processing time dynamically varies
because of the nature of their data structures.

Main concept of the design for executing NRM was to allow multi-thread execution. However,
since it is highly difficult to achieve high throughput by naively exploiting data-level parallelism,
the design adopted a data-driven methodology. Every module in the circuit was categorized into
two groups. The former is called a thread module, which owns its data structure (IPQ, DG and
initial values) for one simulation thread and initiates a computation. The latter is called a shared
module, which are parameter tables or arithmetic pipelines. The two modules are linked with an
interconnection network. By modifying the network between two groups, hardware design can be
flexibly tuned to perform well on the target FPGA device.

Finally, performance using three categories of network were evaluated: simple multiplexer, NoC,
and modified multiplexers called Concentrator and Distributor that play similar roles to routers. We
found that the third approach achieves best performance. It was evaluated with different number of
threads, and through the result analysis we studied a methodology to reduce waiting time.

Overall, the design achieved approximately 4.2 to 5.4 times higher throughput compared to exe-
cution on Core 2 Quad Q6600 2.40GHz.

Chapter 6

Conclusion

6.1 Summary

This thesis presented implementations and evaluations of two SSA algorithms on an FPGA. We
discussed the area, throughput and availability compared to their software execution.

Contribution of this work is to clarify the relationship between algorithm, hardware architecture,
and performance according to data size based on the evaluation results. On designing hardware, we
covered following three points:

1. It runs exact same algorithm with original SSAs using floating-point arithmetics,

2. It has a capability to simulate large scale biochemical model,

3. It exploits effective utilization for logic resource in FPGA.

To attend these requirements, we proposed methodologies for implementing following algo-
rithms, and their performances were evaluated.

At first, we proposed a methodology for implementing an SSA algorithm called First Reaction
Method (FRM). Processes in the algorithm is simple, and has high degree of loop- and data-level
parallelism. Thus, the hardware design was fixed, and data flow was statically scheduled to enhance
performance by consecutively injecting data into deep pipelines of floating point units. Arithmetic
operations were configured faithfully to the original algorithm by single-precision floating-point data.
We validated that the implemented hardware can treat small-scale models well. Overall, the design
achieved more than 80-fold throughput compared to software execution on Xeon 2.80 GHz, with
large-scale biochemical systems for up to 1023 reactions.

Secondly, this work presented an implementation of SSA execution system applying an algorithm
called Next Reaction Method (NRM). The algorithm adopts two distinctive data structures: a binary
tree in an Indexed Priority Que (IPQ) and a Dependency Graph (DG). They are used for improving
computational efficiency over FRM for large-scale models, but processing time dynamically varies
because of the nature of their data structures.

Main concept of the design for executing NRM was to allow multi-thread execution. However,
since it is highly difficult to achieve high throughput by naively exploiting data-level parallelism,
the design adopted a data-driven methodology. Every module in the circuit was categorized into
two groups. The former is called a thread module, which owns its data structure (IPQ, DG and
initial values) for one simulation thread and initiates a computation. The latter is called a shared
module, which are parameter tables or arithmetic pipelines. The two modules are linked with an
interconnection network. By modifying the network between two groups, hardware design can be
flexibly tuned to perform well on the target FPGA device.

6. Conclusion
6.2. Outlook for the future 62

Finally, performance using three categories of network were evaluated: simple multiplexer, NoC,
and modified multiplexers called Concentrator and Distributor that play similar roles to routers. We
found that the third approach achieves best performance. It was evaluated with different number of
threads, and through the result analysis we studied a methodology to reduce waiting time.

Overall, the design achieved approximately 4.2 to 5.4 times higher throughput compared to exe-
cution on Core 2 Quad Q6600 2.40GHz.

6.2 Outlook for the future

Computing systems using FPGAs will expand the future to achieve high-performance for many ap-
plications with lower operating costs. The price of an FPGA chip will degrade by volume efficiency.
This is because FPGAs are now embedded in large-scale computing systems in some research insti-
tute, such as BEE2 [52] and commercial products like high-vision recorders and video capture cards.
This means that the advantage of paying initial costs for introducing FPGA devices is becoming
much higher than producing ASIC. Moreover, the operating cost is much lower than personal com-
puters and other hardware like Cell/BE and GPU when applications are limited to rather restricted
range.

This study showed that a middle-range FPGA can achieve severalfold higher throughput com-
pared to a recent microprocessor. Although it is true that recent FPGAs can outperform performance
of personal computers by 10 times in maximum, performance improvement by parallel processing
on a chip can be expand linearly according to the capacity of the FPGA. Moreover, recent FPGAs are
being developed to operate with operating frequency higher than 500 MHz. Recent microprocessors
will not be able to improve performance simply by their number of core, because each core shares a
cache with other cores.

Therefore, FPGA limps toward an alternative of a computational system using multiple micro-
processors. By then, we may have a new approach for implementation; from traditional methodology
to write programs which is adjusted to hardware, to selecting and generating hardware that best fit
target application.

Bibliography

[1] Michael Hucka, Andrew Finney, Herbert M. Sauro, H. Bolouri, John C. Doyle, Hiroaki Kitano, Adam P.
Arkin, Benjamin J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar, Serge Dronov, Ernst Dieter
Gilles, Martin Ginkel, Victoria Gor, Igor Goryanin, W. J. Hedley, T. Charles Hodgman, J. H. Hofmeyr,
Peter J. Hunter, Nick S. Juty, J. L. Kasberger, Andreas Kremling, Ursula Kummer, Nicolas Le Novère,
Leslie M. Loew, D. Lucio, Pedro Mendes, E. Minch, Eric Mjolsness, Yoichi Nakayama, M. R. Nel-
son, P. F. Nielsen, T. Sakurada, James C. Schaff, Bruce E. Shapiro, Thomas Simon Shimizu, Hugh D.
Spence, Jörg Stelling, Koichi Takahashi, Masaru Tomita, J. Wagner, and J. Wang. The systems biology
markup language(sbml): A medium for representation and exchange of biochemical network models.
Bioinformatics, 19:524–531, 2003.

[2] Bruce A. Barshop, Richard F. Wrenn, and Carl Frieden. Analysis of numerical methods for computer
simulation of kinetic processes: Development of kinsim — a flexible, portable system.Analytical Bio-
chemistry, 130:134–145, 1983.

[3] Pedro Mendes. Gepasi: a software package for modeling the dynamics, steady states and control of
biochemical and other systems.Computer Applications in the Biosciences, 9(5):563–571, Oct. 1993.

[4] Masaru Tomita, Kenta Hashimoto, Kouichi Takahashi, Thomas Simon Shimizu, Yuri Matsuzaki, Fumi-
hiko Miyoshi, Kanako Saito, Sakura Tanida, Katsuyuki Yugi, J. Craig Venter, and Clyde A. HutchisonIII.
E-cell: software environment for whole-cell simulation.Bioinformatics, 15(1):72–84, Jan. 1999.

[5] James Schaff, Charles C. Fink, Boris Slepchenko, John H. Carson, and Leslie M. Loew. A general
computational framework for modeling cellular struc ture and function.Biophysical Journal, 73:1135–
1146, Sep. 1997.

[6] James Schaff and Leslie M. Loew. The virtual cell. InProceedings of Pacific Symposium on Biocomput-
ing, volume 4, pages 228–239, Jan. 1999.

[7] Leslie M. Loew and James Schaff. The virtual cell: a software environment for computational cell
biology. Trends in Biotechnology, 19(10):401–406, Oct. 2001.

[8] Daniel T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled
chemical reactions.Journal of Computational Physics, 22:403–434, 1976.

[9] Andrzej M. Kierzek. Stocks: Stochastic kinetic simulations of biochemical systems with gillespie algo-
rithm. Bioinformatics, 18(3):470–481, Mar. 2002.

[10] Nicolas Le Novère and Thomas Simon Shimizu. Stochsim: modelling of stochastic biomolecular pro-
cesses.Bioinformatics, 17(6):575–576, Jun. 2001.

[11] Yasunori Osana, Tomonori Fukushima, and Hideharu Amano. Implementation of recsip: a reconfig-
urable cell simulation platform. InThe 13th International Conference on Field Programmable Logic and
Applications, volume 2778 ofLecture Notes in Computer Science, pages 766–775. Springer, Sep. 2003.

[12] Yasunori Osana, Tomonori Fukushima, Masato Yoshimi, and Hideharu Amano. An FPGA-based acceler-
ation method for metabolic simulation.IEICE Trans. on Information and Systems, E87-D(8):2029–2037,
Aug. 2004.

[13] ReCSiP Project Team. ReCSiP project frontpage. http://recsip.org/.

[14] James Dewey Watson and Francis Harry Compton Crick. Molecular structure of nucleic acids: A struc-
ture for deoxyribose nucleic acid.Nature, 171(4356):737–738, Apr. 1953.

[15] Daniel T. Gillespie. Stochastic simulation of chemical kinetics.Annual Review of Physical Chemistry,
58:35–55, May. 2007.

Bibliography 64

[16] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions.The Journal of Physical
Chemistry, 81(25):2340–2461, Dec. 1977.

[17] Hiroyuki Kurata, Hana El-Samad, Tau-Mu Yi, Mustafa Khammash, and John C. Doyle. Feedback reg-
ulation of the heat shock response in e. coli. InProceedings of the 40th IEEE Conference on Decision
and Control, pages 837–842, 2001.

[18] Hong Li, Yang Cao, Linda R. Petzold, and Daniel T. Gillespie. Algorithms and software for stochastic
simulation of biochemical reacting systems.Biotechnology Progress, 24(1):56–61, Sep. 2007.

[19] Yang Cao, Hong Li, and Linda Petzold. Efficient formulation of the stochastic simulation algorithm for
chemically recting systems.Journal of Chemical Physics, 121(9):4059–4067, 2004.

[20] Michael A. Gibson and Jehoshua Bruck. Efficient exact stochastic simulation of chemical systems with
many species and many channels.Journal of Physical Chemistry A, 104(9):1876–1889, 2000.

[21] Daniel T. Gillespie. Approximate acclerated stochastic simulation of chemically reacting systems.Jour-
nal of Chemical Physics, 115(4):1717–1733, Jul. 2001.

[22] Muruhan Rathinam, Linda R. Petzold, and Yang Cao. Stiffness in stochastic chemically reacting systems:
The implicit tau-leaping method.Journal of Chemical Physics, 119(24):12784–12794, 2003.

[23] Yang Cao and Linda R. Petzold. Trapezoidal tau-lepaing formula for the stochastic simulation of bio-
chemical systems. InProceedings of Foundations of Systems Biology in Engineering (FOSBE 2005),
pages 149–152, 2005.

[24] Andrzej M. Kierzek, Jolanta Zaim, and Piotr Zielenkiewicz. The effect of transcription and translation
initiation frequencies on the stochastic fluctuations in prokaryotic gene expression.Journal of Biological
Chemistry, 276(11):8165–8172, Mar. 2001.

[25] Adam Arkin, John Ross, and Harley H.McAdams. Stochastic kinetic analysis of developmental pathway
bifurcation in phageλ-infected escherichia coli cells.Genetics, 149:1633–1648, Aug. 1998.

[26] George Marsaglia, Arif Zaman, and Wai Wan Tsang. Toward a universal random number generator.
Letters in Statistics and Probability, 9(1):35–39, Jan. 1990.

[27] Nicolas Le Novère. Stochsim, a stochastic biochemical simulator.http://www.ebi.ac.uk/~lenov/
stochsim.html.

[28] Bray Group: Computer Models of Bacterial Chemotaxis. Stochsim.http://www.pdn.cam.ac.uk/
groups/comp-cell/StochSim.html, May. 2006.

[29] Kouichi Takahashi, Katsuyuki Yugi, Kenta Hashimoto, Yohei Yamada, Christopher J. F. Pickett, and Ma-
saru Tomita. A multi-algorithm, multi-timescale method for cell simulation.Bioinformatics, 20(4):538–
546, Mar. 2004.

[30] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: A 623-dimensionally equidistributed uni-
form pseudo-random number generator.ACM Transactions on Modeling and Computer Simulation,
8(1):3–30, Jan. 1998.

[31] Yang Cao, Andrew Hall, Hong Li, Sotiria Lampoudi, and Linda Petzold. User’s guide for stochkit.
http://www.engineering.ucsb.edu/~cse/StochKit/StochKitUserGuide.pdf.

[32] Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. The slow-scale stochastic simulation algorithm.
Journal of Chemical Physics, 122(1):014116–1–18, 2005.

[33] Stephen D. Brown et al.Field-Programmable Gate Arrays. Kluwer Academic Publishers, 1992.

[34] Xilinx Inc. Virtex-II Platform FPGA User Guide, v2.0 edition, Mar. 2005.

[35] Xilinx Inc. Virtex-II Pro and Virtex-II Pro X FPGA User Guide, v4.0 edition, Mar. 2005.

[36] Atsushi Kawai, Toshiyuki Fukushige, Jun ichiro Makino, and Makoto Taiji. Grape-5: A special-purpose
computer for n-body simulations.Publ. of the Astronomical Society of Japan, 52:659–676, Aug. 2000.

[37] Naohito Nakasato and Tsuyoshi Hamada. Astrophysical hydrodynamics simulations on a reconfigurable
system. InProceedings of the 13th IEEE Workshop on FPGAs for Custom Computing Machines, pages
279–280, Apr. 2005.

[38] Tsuyoshi Hamada, Naohito Nakasato, and Toshikazu Ebisuzaki. A 236 gflops astrophysical simulation
on a reconfigurable super-computer. InProceedings of IEEE/ACM SC 2005 Conference, Nov. 2005.

http://www.ebi.ac.uk/~lenov/stochsim.html
http://www.ebi.ac.uk/~lenov/stochsim.html
http://www.pdn.cam.ac.uk/groups/comp-cell/StochSim.html
http://www.pdn.cam.ac.uk/groups/comp-cell/StochSim.html
http://www.engineering.ucsb.edu/~cse/StochKit/StochKitUserGuide.pdf

Bibliography 65

[39] Yongfeng Gu, Tom Van Court, and Martin Herbordt. Accelerating molecular dynamics simulations with
reconfigurable circuits. InProceedings of the 15th International Conference on Field-Programmable
Logic and Applications, pages 475–480, Aug. 2005.

[40] John F. Keane, Christpher Bradley, and Carl Ebeling. A compiled accelerator for biological cell sig-
naling simulations. InProceedings of the 2004 ACM/SIGDA 12th international symposium on Field
programmable gate arrays, pages 233–241, Feb. 2004.

[41] Larry Lok. The need for speed in stochastic simulation.Nature Biotechnology, 22(8):964–965, Aug.
2004.

[42] Lukasz Salwinski and David Eisenberg. In silico simulation of biological network dynamics.Nature
Biotechnology, 22(8):1017–1019, Aug. 2004.

[43] Brandon Thurmon, James M. McCollum, Gregory D. Peterson, Chris D. Cox, Nagiza F. Samatova,
Gary Sayler, and Michael L. Simpson. Accelerating exact stochastic simulation using reconfigurable
computing. InInternational Conference on Engineering of Reconfigurable Systems and Algorithms,
2005.

[44] Philip Heng Wai Leong, Monk Ping Leong, O. Y. H. Cheung, T. Tung, C. M. Kwok, M. Y. Wong, and
Kin Hong Hong Lee. Pilchard – a reconfigurable computing platform with memory slot interface. In
Proceedings of the 9th IEEE Symposium on Field-Programmable Custom Computing Machines, pages
170–179, 2001.

[45] Yasunori Osana, Tomonori Fukushima, and Hideharu Amano. Implementation of recsip: a reconfig-
urable cell simulation platform. InThe 13th International Conference on Field Programmable Logic and
Applications(FPL), pages 766–775, Sep. 2003.

[46] Masato Yoshimi, Yasunori Osana, Tomonori Fukushima, and Hideharu Amano. Stochastic simulation
for biochemical reactions on FPGA. InThe 14th International Conference on Field Programmable Logic
and Applications, volume 3203 ofLecture Notes in Computer Science, pages 105–114. Springer, Aug.
2004.

[47] Takakazu Kurokawa. Hardware implemenrtation of mersenne twister using fpga. InProceedings of the
2001 International Technical Conference on Circuits/Systems, Computers and Communications, pages
307–310, July 2001.

[48] Shiro Konuma and Shinichi Ichikawa. Design and evaluation of hardware pseudo-random number gener-
ator mt19937.IEICE TRANSACTIONS on Information and Systems, E88-D(12):2876–2879, Dec. 2005.

[49] Masato Yoshimi, Yow Iwaoka, Yuri Nishikawa, Toshinori Kojima, Yasunori Osana, Akira Funahashi,
Noriko Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hideki Yamada, Hiroaki Kitano, and Hideharu Amano.
FPGA Implementation of a data-driven Stochastic Biochemical Simulator with the Next Reaction
Method. InThe 17th International Conference on Field Programmable Logic and Applications(FPL’07),
pages 254–259. IEEE, Aug. 2007.

[50] Masato Yoshimi, Yuri Nishikawa, Toshinori Kojima, Yasunori Osana, Akira Funahashi, Noriko Hiroi,
Yuichiro Shibata, Hideki Yamada, Hiroaki Kitano, and Hideharu Amano. A framework for implementing
a network-based stochastic biochemical simulator on an fpga. InInternational Conference on Field-
Programmable Technology(ICFPT’07), pages 193–200, Dec. 2007.

[51] Tokyo Electron Device. Virtex-5 LXT/SXT PCI Express Evaluation Platform Board.http://www.
inrevium.jp/eng/x-fpga-board/hibiki.html.

[52] Chen Chang, John Wawrzynek, and Robert W. Brodersen. Bee2: A high-end reconfigurable computing
system.IEEE Design and Test of Computers, 22(2):114–125, Mar. 2005.

[53] IEEE Task P754.ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arithmetic. IEEE, New
York, Aug. 1985.

http://www.inrevium.jp/eng/x-fpga-board/hibiki.html
http://www.inrevium.jp/eng/x-fpga-board/hibiki.html

Publications

Journal Papers

[1] Masato Yoshimi, Yuri Nishikawa, Yasunori Osana, Akira Funahashi, Noriko Hiroi, Yuichiro
Shibata, Hideki Yamada, Hiroaki Kitano and Hideharu Amano, “Design and Evaluation of an
FPGA-based Stochastic Biochemical Simulator for High-throughput Execution”,IPSJ trans-
actions on Advanced Computers System, Vol.1, No.3, pp.120-135, December, 2008. (In Japanese).

[2] Yow Iwaoka, Yasunori Osana, Masato Yoshimi, Yuri Nishikawa, Toshinori Kojima, Akira
Funahashi, Noriko Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu
Amano, “A Biochemical Model Compiler for Simulations on an FPGA”,IEICE Transactions
on Information and Systems, Vol.J91-D, No.9, pp.2205-2216, September, 2008. (In Japanese).

[3] Yasunori Osana, Masato Yoshimi, Yow Iwaoka, Toshinori Kojima, Yuri Nishikawa, Akira
Funahashi, Noriko Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu
Amano, “ReCSiP: An FPGA-based general-purpose biochemical simulator”,Electronics and
Communications in Japan (Part II:Electronics), Vol.90, No.7, pp.1-10, July, 2007.

[4] Masato Yoshimi, Yasunori Osana, Yow Iwaoka, Yuri Nishikawa, Toshinori Kojima, Yuichiro
Shibata, Naoki Iwanaga, Akira Funahashi, Noriko Hiroi, Hiroaki Kitano and Hideharu Amano,
“FPGA-based Stochastic Biochemical Simulator”,IPSJ transactions on Advanced Computers
System, Vol.48, No.SIG3 ACS17, pp.45-58, February, 2007. (In Japanese).

[5] Yasunori Osana, Masato Yoshimi, Yow Iwaoka, Toshinori Kojima, Yuri Nishikawa, Akira
Funahashi, Noriko Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu
Amano, “ReCSiP: A FPGA-Based General Purpose Biochemical Simulator”,IEICE Trans-
actions on Information and Systems, Vol.J89-D, No.6, pp. 1163-1172, January, 2006. (In
Japanese).

[6] Yasunori Osana, Tomonori Fukushima, Masato Yoshimiand Hideharu Amano, “An FPGA-
Based Acceleration Method for Metabolic Simulation”,IEICE Transactions on Information
and Systems, Vol.E87-D, No.8, pp.2029-2037, August, 2004.

International Conference Papers

[7] Masato Yoshimi, Yuri Nishikawa, Yasunori Osana, Akira Funahashi, Noriko Hiroi, Yuichiro
Shibata, Hideki Yamada, Hiroaki Kitano and Hideharu Amano, “Practical Implementation of
a Network-Based Stochastic Biochemical Simulation System on an FPGA”, The 18th Inter-
national Conference on Field Programmable Logic and Applications (FPL’08), pp. 663-666,
August, 2008.

[8] Masato Yoshimi, Yuri Nishikawa, Toshinori Kojima, Yasunori Osana, Akira Funahashi, Noriko
Hiroi, Yuichiro Shibata, Hideki Yamada, Hiroaki Kitano and Hideharu Amano, “A Framework

Publications 67

for Implementing a Network-Based Stochastic Biochemical Simulator on an FPGA, Interna-
tional Conference on Field-Programmable Technology(ICFPT’07)”, pp.193-200, December,
2007.

[9] Yuri Nishikawa, Michihiro Koibuchi, Masato Yoshimi, Kenichi Miura and Hideharu Amano,
“Performance Improvement Methodology for ClearSpeed’s CSX600”, The 2007 International
Conference on Parallel Processing(ICPP-07), September, 2007.

[10] Hideki Yamada, Naoki Iwanaga, Yuichiro Shibata, Yasunori Osana, Masato Yoshimi, Yow
Iwaoka, Yuri Nishikawa, Toshinori Kojima, Hideharu Amano, Akira Funahashi, Noriko Hiroi,
Hiroaki Kitano and Kiyoshi Oguri, “A Combining Technique of Rate Law Functions for a
Cost-effective Reconfigurable Biological Simulator”, The 17th International Conference on
Field Programmable Logic and Applications (FPL’07), pp. 808-811, August, 2007.

[11] Masato Yoshimi, Yow Iwaoka, Yuri Nishikawa, Toshinori Kojima, Yasunori Osana, Akira Fu-
nahashi, Noriko Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hideki Yamada, Hiroaki Kitano and
Hideharu Amano, “FPGA Implementation of a data-driven Stochastic Biochemical Simulator
with the Next Reaction Method”, The 17th International Conference on Field Programmable
Logic and Applications(FPL’07), IEEE, pp.254-259, August, 2007.

[12] Yasunori Osana, Masato Yoshimi, Yow Iwaoka, Toshinori Kojima, Yuri Nishikawa, Akira
Funahashi, Noriko Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu
Amano, “A Hardware Accelerator for Biochemical Simulations”, Winter Simulation Confer-
ence 2006 (WSC06), CD-ROM, December, 2006,

[13] Masato Yoshimi, Yasunori Osana, Yow Iwaoka, Yuri Nishikawa, Toshinori Kojima, Akira
Funahashi, Noriko Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu
Amano, “Hardware Design of a Stochastic Biochemical Simulator”, Winter Simulation Con-
ference 2006 (WSC06), CD-ROM, December, 2006.

[14] Yow Iwaoka, Yasunori Osana, Masato Yoshimi, Toshinori Kojima, Yuri Nishikawa, Akira
Funahashi, Noriko Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu
Amano, “An Acceleration of a Biochemical Simulator on Programmable Hardware”, The Sev-
enth International Conference on Systems Biology(ICSB2006), September, 2006.

[15] Miyashiro, T., Kitamura, A., Masato Yoshimi, Hideharu Amano, Nakajyo, H. and Tanabe, N.,
“DIMMNET-2: A Reconfigurable Board Connected into a Memory Slot”, The 16th Interna-
tional Conference on Field Programmable Logic and Applications (FPL’06), pp. 825-828,
August, 2006.

[16] Masato Yoshimi, Yasunori Osana, Yow Iwaoka, Yuri Nishikawa, Toshinori Kojima, Akira
Funahashi, Noriko Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu
Amano, “An FPGA Implementation of High Throughput Stochastic Simulator for Large-Scale
Biochemical Systems”, The 16th International Conference on Field Programmable Logic and
Applications(FPL’06), pp.227-232, August, 2006.

[17] Yasunori Osana, Masato Yoshimi, Yow Iwaoka, Toshinori Kojima, Yuri Nishikawa, Akira
Funahashi, Noriko Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu
Amano, “Performance Evaluation of an FPGA-Based Biochemical Simulator ReCSiP”, The
16th International Conference on Field Programmable Logic and Applications(FPL’06), IEEE,
pp.845-850, August, 2006.

[18] Daihan Wang, Hiroki Matsutani, Masato Yoshimi, Hideharu Amano and Michihiro Koibuchi,
“A Parametric Study of Scalable Interconnects on FPGAs”, The 2006 International Conference
on Engineering of Reconfigurable Systems and Algorithms (ERSA’06), CD-ROM, June, 2006.

Publications 68

[19] Yuri Nishikawa, Yasunori Osana, Masato Yoshimi, Yow Iwaoka, Toshinori Kojima, Akira
Funahashi, Noriko Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu
Amano, “An Evaluation and Investigation of Dual-Thread Numerical Integration Mechanism
for FPGA-based Biochemical Simulator ReCSiP”, Coolchips IX, April, 2006.

[20] Masato Yoshimi, Yasunori Osana, Yow Iwaoka, Akira Funahashi, Noriko Hiroi, Yuichiro Shi-
bata, Naoki Iwanaga, Hiroaki Kitano and Hideharu Amano, “The Design of Scalable Stochas-
tic Biochemical Simulator on FPGA”, 2005 IEEE International Conference on Field Pro-
grammable Technology (FPT’05), IEEE, pp.339-340, December, 2005.

[21] Naoki Iwanaga, Yuichiro Shibata, Masato Yoshimi, Yasunori Osana, Yow Iwaoka, Tomonori
Fukushima, Hideharu Amano, Akira Funahashi, Noriko Hiroi, Hiroaki Kitano and Kiyoshi
Oguri, “Efficient Scheduling of Rate Law Functions for ODE-based Multimodel Biochemical
Simulation on an FPGA”, Proceedings of the 15th Field Programmable Logic and its applica-
tions (FPL’05), IEEE, pp. 666-669, August, 2005.

[22] Yasunori Osana, Yow Iwaoka, Tomonori Fukushima, Masato Yoshimi, Akira Funahashi, Noriko
Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu Amano, “A Framework
for ODE-Based Multimodel Biochemical Simulations on an FPGA”, Proceedings of the 15th
Field Programmable Logic and its applications (FPL’05), IEEE, pp.574-577, August, 2005.

[23] Yasunori Osana, Tomonori Fukushima, Masato Yoshimi, Yow Iwaoka, Akira Funahashi, Noriko
Hiroi, Yuichiro Shibata, Hiroaki Kitano and Hideharu Amano, “An FPGA-Based, Multi-model
Simulation for Biochemical Systems”, Proceedings of the 19th International Parallel and Dis-
tributed Processing Symposium/ Reconfigurable Architecture Workshop(RAW’05), IEEE,
CD-ROM, April, 2005.

[24] Masato Yoshimi, Yasunori Osana, Tomonori Fukushima and Hideharu Amano, “Stochastic
Simulation for Biochemical Reactions on FPGA”, The 14th International Conference on Field
Programmable Logic and Applications (FPL’04), Springer, Vol.3203, pp.105-114, August,
2004.

[25] Masato Yoshimi, Yasunori Osana, Tomonori Fukushima and Hideharu Amano, “Implementa-
tion and Evaluation of Stochastic Simulation of Chemical Reaction Model on FPGA”, COOL
Chips VII, pp.83, April2004.

Domestic Conference Papers and Technical Reports

Original Papers

[26] Masato Yoshimi, Yuri Nishikawa, Yasunori Osana, Akira Funahashi, Noriko Hiroi, Yuichiro
Shibata, Hideki Yamada, Hiroaki Kitano and Hideharu Amano, “Proposal of FPGA-based
calculation system exploiting thread level parallelism for scientific applications”, IPSJ SIG
Notes, IPSJ, Vol. 2008, No.101, pp.63-66, October, 2008. (In Japanese).

[27] Masato Yoshimi, Yuri Nishikawa, Toshinori Kojima, Yasunori Osana, Akira Funahashi, Noriko
Hiroi, Yuichiro Shibata, Hideki Yamada, Hiroaki Kitano and Hideharu Amano, “Evaluation of
a Data-Driven Architecture for a Stochastic Biochemical Simulator on an FPGA”, IEICE Tech-
nical Report, Vol.107, No.342, pp.43-48, November, 2007. (In Japanese).

[28] Masato Yoshimi, Yow Iwaoka, Yuri Nishikawa, Toshinori Kojima, Yasunori Osana, Yuichiro
Shibata, Naoki Iwanaga, Akira Funahashi, Noriko Hiroi, Hiroaki Kitano and Hideharu Amano,
“Empirical Analysis on Implementation of High-Speed Stochastic Biochemical Simulator on
an FPGA”, 29th Parthenon workshop, Vol.1, No.5, pp.29-36, December, 2006. (In Japanese).

Publications 69

[29] Masato Yoshimi, Yasunori Osana, Yow Iwaoka, Yuri Nishikawa, Toshinori Kojima, Yuichiro
Shibata, Naoki Iwanaga, Akira Funahashi, Noriko Hiroi, Hiroaki Kitano and Hideharu Amano,
“FPGA-based Stochastic Biochemical Simulator”, Proccedings of the Symposium on Ad-
vanced Computing Systems and Infrastructures 2006, No.5, pp. 151-158, May, 2006. (In
Japanese).

[30] Masato Yoshimi, Yasunori Osana, Yow Iwaoka, Tomonori Fukushima, Akira Funahashi, Noriko
Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu Amano, “Design of a
Heap-tree Based Scalable Stochastic Biochemical Simulator on an FPGA”, IEICE Technical
Report, Vol.105, No.42, pp.37-42, May, 2005. (In Japanese).

[31] Masato Yoshimi, Yasunori Osana, Yow Iwaoka, Yuichiro Shibata, Naoki Iwanaga and Hide-
haru Amano, “Design of Floating-Point Arithmetic and Logic Units for Computational Science
and Technology on FPGA”, 26th Parthenon workshop, Vol.1, No.7, pp.49-55, May, 2005. (In
Japanese).

[32] Masato Yoshimi, Yasunori Osana, Yow Iwaoka, Yuri Nishikawa, Toshinori Kojima, Akira
Funahashi, Noriko Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu
Amano, “A Stochastic Biochemical Simulator with a Data-transfer Network on an FPGA”,
IEICE Technical Report, Vol.105, No.518, pp.47-52, 2005. (In Japanese).

[33] Masato Yoshimi, Yasunori Osana, Tomonori Fukushima and Hideharu Amano, “Acceleration
Hardware of Stochastic Simulation for Biochemical Reactions on FPGA”, 4th Workshop on
Reconfigurable Systems, No.33, pp. 220-226, September, 2004. (In Japanese).

Joint Papers

[34] Tomoaki Tsumura, Masato Yoshimi, Takashi Nakada, Takahiro Katagiri and Kenji Kise, “The
Report on “Cell Speed Challenge 2008” ”, IPSJ SIG Notes, IPSJ, Vol.2008, No.75, pp.103-
108, August, 2008. (In Japanese).

[35] Tomoya Ishimori, Hideki Yamada, Yuichiro Shibata, Yasunori Osana, Masato Yoshimi, Yuri
Nishikawa, Toshinori Kojima, Hideharu Amano, Akira Funahashi, Noriko Hiroi and Kiyoshi
Oguri, “Pipeline Scheduling with Input Port Constraints for an FPGA-based Biochemical Sim-
ulator”, IEICE Technical Report, Vol.108, No.48, pp.113-118, May, 2008. (In Japanese).

[36] Hideki Yamada, Tomoya Ishimori, Yuichiro Shibata, Yasunori Osana, Masato Yoshimi, Yuri
Nishikawa, Hideharu Amano, Akira Funahashi, Noriko Hiroi and Kiyoshi Oguri, “An au-
tomatic combine algorithm of arithmetic pipelines for an FPGA-based biochemical simula-
tor focused on similarities of rate law functions”, IEICE Technical Report, Vol.108, No.220,
pp.21-26, September, 2008. (In Japanese).

[37] Hideki Yamada, Naoki Iwanaga, Yuichiro Shibata, Yasunori Osana, Masato Yoshimi, Yow
Iwaoka, Yuri Nishikawa, Toshinori Kojima, Hideharu Amano, Akira Funahashi, Noriko Hiroi,
Hiroaki Kitano and Kiyoshi Oguri, “Automatic combining of rate law functions for an FPGA-
based biochemical simulator ReCSiP”, IEICE Technical Report, Vol.107, No.41, pp.13-18,
May, 2007. (In Japanese).

[38] Kenji Kise, Masato Yoshimi, Takahiro Katagiri and Hiroshi Nakamura, “The Report on Mul-
ticore Programming Contest Cell Speed Challenge 2007”, IPSJ SIG Notes, IPSJ, Vol.2007,
No.79, pp.193-198, August, 2007. (In Japanese).

[39] Yuri Nishikawa, Michihiro Koibuchi, Masato Yoshimiand Hideharu Amano, “A Proposal of
Performance Improvement Based on A Parallel Benchmark Evaluation on a ClearSpeed Co-
processor”, IPSJ SIG Notes, IPSJ, Vol.2007, No.17, pp.257-262, March, 2007. (In Japanese).

Publications 70

[40] Yuri Nishikawa, Michihiro Koibuchi, Masato Yoshimi, Kenichi Miura and Hideharu Amano,
“A Study of Time Prediction Method for Running Parallel Applications on ClearSpeed’s SIMD-
Based Multi-Core Processor”, IPSJ SIG Notes, IPSJ, Vol.2007, No.79, pp.43-48, August,
2007. (In Japanese).

[41] Toshinori Kojima, Yasunori Osana, Masato Yoshimi, Yow Iwaoka, Yuri Nishikawa, Funahashi,
H., Noriko Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu Amano,
“Implementation and Evaluation of General-Purpose Host Interface on ReCSiP Board”, IEICE
Technical Report, Vol.106, No.49, pp.55-60, May, 2006. (In Japanese).

[42] Yuri Nishikawa, Yasunori Osana, Masato Yoshimi, Yow Iwaoka, Toshinori Kojima, Akira
Funahashi, Noriko Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu
Amano, “A Performance Improvement Strategy for Numerical Integration on an FPGA-Based
Biochemical Simulator ReCSiP”, IEICE Technical Report, Vol.105, No.518, pp.53-58, Jan-
uary, 2006. (In Japanese).

[43] Yasunori Osana, Naoki Iwanaga, Masato Yoshimi, Yow Iwaoka, Toshinori Kojima, Yuri Nishikawa,
Akira Funahashi, Noriko Hiroi, Yuichiro Shibata, Hiroaki Kitano and Hideharu Amano, “Hardware-
resource Utilization Analysis on an FPGA-Based Biochemical Simulator ReCSiP”, IEICE
Technical Report, Vol.105, No.518, pp.59-64, January, 2006. (In Japanese).

[44] Daihan Wang, Hiroki Matsutani, Masato Yoshimi, Michihiro Koibuchi and Hideharu Amano,
“A Parametric Study of Packet-Switched FPGA Overlay Networks”, IEICE Technical Report,
Vol.106, No.247, pp.31-36, September, 2006. (In Japanese).

[45] Naoki Iwanaga, Yuichiro Shibata, Masato Yoshimi, Yasunori Osana, Yow Iwaoka, Tomonori
Fukushima, Hideharu Amano, Akira Funahashi, Noriko Hiroi, Hiroaki Kitano and Kiyoshi
Oguri, “Scheduling of Rate Law Functions for an FPGA-based Biochemical Simulator”, IE-
ICE Technical Report, Vol.105, No.42, pp.43-48, May, 2005. (In Japanese).

[46] Yow Iwaoka, Yasunori Osana, Tomonori Fukushima, Masato Yoshimi, Akira Funahashi, Noriko
Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu Amano, “Design of
cellular simulation platform for SBML model”, IEICE Technical Report, Vol.104, No.591,
pp.63-68, January, 2005. (In Japanese).

[47] Yow Iwaoka, Yasunori Osana, Masato Yoshimi, Toshinori Kojima, Yuri Nishikawa, Akira
Funahashi, Noriko Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu
Amano, “A System Design of Accelerating Biochemical Simulations on Programmable Hard-
ware”, The 10th Forum on Software Platforms for Systems Biology, October, 2005. (In
Japanese).

[48] Yow Iwaoka, Yasunori Osana, Masato Yoshimi, Kojima, Y., Yuri Nishikawa, Akira Funahashi,
Noriko Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu Amano, “Build-
ing of the SBML System for an FPGA-based Biochemical Simulator”, IEICE Technical Re-
port, Vol.105, No.287, pp.61-66, September, 2005, (In Japanese).

[49] Yasunori Osana, Tomonori Fukushima, Masato Yoshimi, Yow Iwaoka, Akira Funahashi, Noriko
Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu Amano, “Design of
the SBML Processor for an FPGA-based Biochemical Simulator”, IPSJ SIG Notes, IPSJ,
Vol.2005, No.7, pp.13-18, January, 2005. (In Japanese).

[50] Yasunori Osana, Masato Yoshimiand Hideharu Amano, “A Feasibility Study on Reconfig-
urable Multi-cellular System Simulator”, IPSJ SIG Notes, IPSJ, Vol.2005, No.120, pp.87-92,
November, 2005. (In Japanese).

[51] Yasunori Osana, Masato Yoshimi, Yow Iwaoka, Akira Funahashi, Noriko Hiroi, Yuichiro Shi-
bata, Naoki Iwanaga, Hiroaki Kitano and Hideharu Amano, “Implementation and Evaluation

Publications 71

of Numerical Integrators on ReCSiP”, IEICE Technical Report, Vol.105, No.42, pp.49-54,
May, 2005. (In Japanese).

[52] Yasunori Osana, Masato Yoshimi, Yow Iwaoka, Toshinori Kojima, Yuri Nishikawa, Akira
Funahashi, Noriko Hiroi, Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano and Hideharu
Amano, “Control Mechanism of the FPGA-Based Biochemical Simulator ReCSiP”, IEICE
Technical Report, Vol.105, No.287, pp.55-60, September, 2005. (In Japanese).

[53] Yasunori Osana, Tomonori Fukushima, Masato Yoshimiand Hideharu Amano, “Multi-Model
Metabolic Simulation of Cellular System on FPGAs”, 4th Workshop on Reconfigurable Sys-
tems, No.8, pp. 49-54, September, 2004. (In Japanese).

[54] Yasunori Osana, Tomonori Fukushima, Masato Yoshimiand Hideharu Amano, “Metabolic
simulation of cellular system by FPGA-based system”, 1st Workshop on Reconfigurable Sys-
tems, No.7, pp. 43-48, September, 2003. (In Japanese).

Appendix A

Implementation of the floating-point logarithmic
function module

A.1 Floating point format

IEEE754 is a standard for defining real numbers in 32-bit or 64-bit format [53]. The former is called
a single precision, and the latter is double precision. Both consists of three parts: sign, exponent, and
mantissa. For a single precision, the signs is expressed in 1-bit, exponente is 8 bits and mantissam
is 23 bits. In case of double precision,s is 1-bit,e is 11 bits andm is 52 bits.

Fig. A.1 shows the format of single-precision floating-point format. When a numberx is ex-
pressed in a single precision format, values ofs, eandmmust satisfy the Eq.A.1.

x = (−1)s× 2e−127×m (A.1)

Exponent parte is biased by 127, and it is used to adjust the decimal point of the mantissa. Mantissa
m is a fixed-point value in the range of [1,2), and the value is expressed in 23-bits (the MSB which
is constantly fixed to 1 is abbreviated). In case ofx = 1.0 as an example, the sign is plus, exponent is
0 and mantissa is 1.0. Thus, the parameters will bes= 0, e= 127 ,andm= 0.

There are following special data types for defining particular values:

Not-a-Number(NaN): e is a definable maximum value andm is other than zero

Infinity (±∞) : e is a definable maximum value andm is zero (sdecides the positive or the negative
of infinity)

Zero(±0) : eandmare zero (There are positive and negative zeros according tos)

In case when the MSB ofm is 1, the value is called SNaN. It is called QNaN in case of 0.
IEEE754 standard defines five possible exceptions:

S exponent mantissa

8 bits 23 bits
1 bit

x = (-1)
s

2
e-127

m

32 bits

ex) 1.0 = 3F800000(hex)

S = 0
e = 127
m = (1.)0000000...0

Fig. A.1: Format of a single-precision floating point

A. Implementation of the floating-point logarithmic function module
A.2. Logarithmic function module 72

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

lo
g2

(x
)

x

y =a x+b

x

y

n

n

yn+1

xn+1

n n

Fig. A.2: Linear interpolation

Invalid operation: Operations using infinity or NaN values, or when it fails to convert a value to
integers

Division by zero: When non-zero value was divided by zero

Overflow: A result is too large to be represented

Underflow: A result is so small that it is out of definable range

Inexact: When one of the three rounding bits are 1

A.2 Logarithmic function module

A.2.1 Realization of logarithmic function

This section introduces a scheme to computes logarithmic value in this thesis. Logarithmic function
module is implemented as a unit which computes logarithmic value of the input using second-order
interpolation. The base is an arbitrary number.

Assume that the base isα and that the input is given as a single precision floating point format :
x = (−1)sx × 2(ex−127) ×mx (sx = 0 or 1,0 ≤ ex ≤ 255, 1 ≤ mx < 2). Then , logα(x) is yielded as:

logα (x) = logα
(
(−1)sx × 2(ex−127) ×mx

)
= logα

(
2(ex−127)

)
+ logα (mx)

=
log2

(
2(ex−127)

)
+ log2 (mx)

log2α

=
(ex − 127) + log2 (mx)

log2α
(A.2)

Using this conversion, logarithmic function module with arbitrary base can be configured by
computing log2(mx) whosemx is within the range of [1,2). log2(mx) is obtained by second-order
interpolation (it is done by correcting the value obtained in linear interpolation).

A. Implementation of the floating-point logarithmic function module
A.2. Logarithmic function module 73

Input
s exponent mantissa

[22:18] [22:0]1

C-TableI-Table

FP MULT

FP ADD

INTtoFLOAT

FP ADD 1/Log (a)

FP MULT

Output

2

Log (x)2 mE

Log (x)2 mE+ s exponent mantissa
Log (a)2

=

Log (x)a

Fig. A.3: Operation flow of logarithmic function with linear interpolation

A.2.2 Linear(First order) interpolation

The log2(x) curve is shown in Fig.A.2 whosex within the range of [1,2).x in Fig. A.2 corresponds
to mantissamx of floating-point explained above.

In linear interpolation, log2(x) curve is approximated with 1024 line segments. Each line is
obtained by its coefficientai and interceptbi (i = 0, · · · ,1023). The parametersai andbi of linear
line in Fig.A.2 are selected when inputx within the range of [xi , xi+1).

To implement linear interpolation, two tables is used to store coefficientsa (Coefficient Table
: C-Table) and interceptsb (Intercept Table :I-Table). The operational flow is shown in Fig.A.3
log2(x) in linear interpolation is obtained by following scheme :

1. Input x is decomposed to each part :s, ex andmx

2. Read coefficient tablean and intercept tablebn according to its addressn which is forehand 10
bits of mantissa part ofmx

3. Calculate log2(mx) = anmx + bn

4. Calculate Eq.A.2 using the value of log2(mx)

The reason to partition segments 1024 lines is to adjust a unit of BlockRAM in Xilinx’s Virtex
series. Because partition is divided 1024 line segments, forehand 10 bits of mantissa part ofx is used
to select an appropriate line segment.

A.2.3 Validation of linear interpolation

To investigate the error of linear interpolation, Fig.A.4 and Fig.A.5 show the error value of the
log2(mx). The error value in their figures is derived by (primary value− linear interpolation value).

When the partition is divided in 32(= 25) line segments which is shown in Fig.A.4, the accuracy
acquires about 12-bits. It is about four digits in decimal. Meanwhile, in the partition divided in 64(=

26) line segments, the accuracy increases about 14-bits. Although error value is adequately small as

A. Implementation of the floating-point logarithmic function module
A.2. Logarithmic function module 74

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

 1 1.2 1.4 1.6 1.8 2

er
ro

r

x

liner interpolation

Fig. A.4: Error in linear interpolation(32 line seg-
ments)

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 4e-05

 4.5e-05

 1 1.2 1.4 1.6 1.8 2

er
ro

r

x

liner interpolation 64

Fig. A.5: Error in linear interpolation(64 line seg-
ments)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

4t
(1

-t
)

t

Fig. A.6: Approximated curve in a line segment of linear interpolation

against single-precision as implemented line segments are 1024(= 210), almost linear interpolation
values are smaller than ideal values. To solve this problem, second-order interpolation is introduced.

A.2.4 Second-order interpolation

To adjust the difference between linear interpolation value and actual value, second-order interpo-
lation is introduced. Error function between in each line segment used for linear interpolation and
actual value of log2(x) draws a quadratic curve as Fig.A.6. The curve is descripted as Eq.A.3 where
t is the inside segment in the line segment.u indicates a ratio compared to the maximum difference
between interpolation value and actual value.

u = 4t(t − 1) = 4t2 − 4t (A.3)

Second-order interpolation is done by adding linear interpolation value and differential value.
This method can be utilized by introducing a table which is stored difference between for each line
segments in the midpoint of the segment. The table is called differential table(D-Table). Offset in
second-order interpolation is calculated using the value from D-Table and a ratiou.

To implement of second-order interpolation, an additional table (D-Table) is exploited in addition
of linear interpolation. It stores differencedn between linear approximationy = ax+ b and log2(x),
which is shown in Eq.A.4. D-Table is read by the address as same as other two tables in linear

A. Implementation of the floating-point logarithmic function module
A.2. Logarithmic function module 75

s e mxx x

coefficient
 Table

intercept
 Table

difference
 Table

10 13

1

SUB

MUL

int -> fp
 & exponent + 2

FMUL

23

FMUL

add
sign & exp

FADD

FADD

32

32
32

32
32

26

13

13

127

SUB

int -> fp

8

8

32

FADD

FMUL

1
log (α)2

32

32

s exx mx

8bit 23 bit

FP Logarithmic
 Function

input

output

s eqq mq

Fig. A.7: Block diagram of logarithmic function with second-order interpolation

interpolation. Eleventh to 20th bit of mantissa part ofx is used ast whose format is the fixed-point
number. The digit point is located in the left of MSB.

dn = log2

(xn + xn+1

2

)
− an

(xn + xn+1

2

)
+ bn (A.4)

The process for obtaining logα(x) are as follows:

1. Upper 10 bitsn of mantissa partmx (besides MSB) is used to read coefficientan, interceptbn,
differentialdn from corresponding tables.

2. Linear-interpolated valueyl is computed byan ×mx + bn (linear interpolation).

3. Eleventh to 20th bit of fractional part of mantissat is chosen. Then,ys = dn × t × (1.0− t) × 4
is computed and added toyl (second-order interpolation).ys is equal to log2(mx).

4. logα(x) is introduced by addingys and (e−127), and multiplying its result and inverse number
of log2(α)

In our implementation, value of 1/ log2(α) was set in arithmetic units in advance so as to omit
its computing process. Fig.A.7 shows a hardware connection diagram of logarithmic function with
second-order interpolation. Operation for quadruple oft(t − 1) in Eq. A.3 is utilized by 2-bit left
shifting instead of multiplication.

A.2.5 Validation of second-order interpolation

Fig. A.8 shows the error value of the log2(mx) when the fractional part inside a line segment is is
divided in 32(= 25). From Fig.A.8, the accuracy acquires about 23-bits. Moreover, as differences of

A. Implementation of the floating-point logarithmic function module
A.2. Logarithmic function module 76

-8e-07

-6e-07

-4e-07

-2e-07

 0

 2e-07

 4e-07

 6e-07

 8e-07

 1 1.2 1.4 1.6 1.8 2

er
ro

r

x

second-order interpolation

Fig. A.8: Error in second-order interpolation(32 line segments)

actual number are almost equally distributed positive and negative regions, second-order interpola-
tion is superior than linear interpolation.

Appendix B

Derivation of Stochastic Biochemical Simulation
Algorithm

B.1 Methods for biochemical simulation

There are two methods to mathematically describe a behavior of a biochemical system in arbitrary
space, (1) deterministic method and (2) stochastic method.

The former is called a deterministic method, and time variation of concentration of molecules is
determined by a set of ordinary differential equation (which is abbreviated to ODE).

On the other hand, stochastic approach assumes time variation of populations of chemical species
as a random walk process determined by a single differential-difference equation. Calculation method-
ology of stochastic chemical reacting model originally derives from a stochastic and statistical ap-
proach called master equation. However, it is difficult to mathematically solve a master equation in
general, so it is often solved by introducing equivalent numerical calculation method.

Gillespie’s “Stochastic Simulation Algorithm” [16] (abbreviated as SSA for the rest of this ap-
pendix) is an algorithm to simulate behavior of biochemical models by applying a computation
method of general stochastic models.

SSA was developed to find solutions to following problems:� �
How is the variability of populations over time when initial values are given forN types of
molecules which uniformly distributes in a space whose volume is constantlyV, are given, and
the number of their cross-reactions areM?� �

B.2 Solution for an analytical model

To solve the problem above, it was conventionally general to take an analytical approach by describ-
ing the problem with ordinary differential equations.

Here, we define a biochemical system，whose index populations is defined by a nonlinear func-
tion Xi(t) (i = 1, . . . ,N). Here, t is time andi is the index number that is unique for each type
of molecules. Assuming that the number ofM types of molecules change continuously, it yields
following first-degree ordinary differential equation:

dXi

dt
= fi(X1, · · · ,XN) (i = 1, · · · ,N) (B.1)

Here, functionfi is determined by the degree (monomolecular, bimolecular, or higher) of reaction
M and its reaction rate constant. These equations are called reaction-rate equation. Trajectory of
X1(t), . . . ,XN(t) represents time variation of each molecules.

B. Derivation of Stochastic Biochemical Simulation Algorithm
B.3. Formulation of chemical reactions with stochastic models 78

r 1+r 2

S12

S1

S2

Collision !

r 2

r 1

S2

r 2

S1

r 1

r 1

S1

S1

r 1

S1

r 1

S2

r 2

S2

r 2

S2

r 2

Fig. B.1: Collision of molecules

Analytical method of such reaction-rate equations are often applied to simple computer systems.
Because it an approximate solution for ordinary differential equations, it implicitly assumes that a
time change of a target biochemical system is continuous and deterministic. However, population
is obviously a discrete integer value, and time variation of actual biochemical system is naturally
discontinuous. Even when behavior of molecules are governed by certain equation, it is impossible
to simulate a behavior of whole system unless positions and velocities of all molecules are precisely
computed.

Another drawback of deterministic approach is error rate. Marginal error of initial rate may grow
at an exponential manner as simulation proceeds, because the small error is integrated by analytical
method of ordinary differential equations. It is also unsuitable for simulating phenomena that goes
through a rapid change, such as regulation of gene expressions. In such cases, small populations
react in a short period of time, and their reaction involves stochastic factors which makes it difficult
to solve with deterministic approach.

B.3 Formulation of chemical reactions with stochastic models

Chemical reactions occur when two or more molecules collide with each other. SSA computes the
collision of molecules under a condition of thermal equilibrium.

B.3.1 Collision of molecules

Assume that there is a system in a equilibrium and consists of two types of gas moleculesS1 andS2.
For simplification, radii ofS1 andS2 arer1 andr2, respectively, and their shape are perfect spheres.
Reaction always occur when the center of two spheres overlap, and they become a molecule whose
radius isr12 = r1 + r2, as shown in Fig.B.1.

Based on the conditions above, frequency of the collision (or reaction rate) in a spaceV is com-
puted as follows. Conventionally, two molecules that react are randomly selected from arbitrary
pairs. Next,v12, a relative velocity of molecular movement forS2 againstS1, is computed. Also,
collision volume, a volume that migrates fromS1 to S2 within time period∆t, is also computed

B. Derivation of Stochastic Biochemical Simulation Algorithm
B.3. Formulation of chemical reactions with stochastic models 79

r12 =r1 +r2

r1

r2

∆V =πr12
2 v12 ∆tcoll

v12 ∆t
S1

S2

Fig. B.2: Collision volume∆Vcoll

(Fig. B.2). The collision volume∆Vcoll is obtained by the following equation.

∆Vcoll = πr
2
12 · v12∆t (B.2)

If the center ofS2 were inherent in space∆Vcoll at time t, two molecules collide within time
period (t, t + ∆t). Accuracy of this method improves by reducing the value of timestep∆t. However,
with ∆Vcoll → 0, population inside collision volume become 0 or 1. As this indicates, it is not always
rigorous to simulate by introducing minimal timestep, and more accurate results can be obtained by
stochastic approach.

Because the system is thermally equilibrium, molecules uniformly distributes inside spaceV.
Thus, the probability for the center of arbitraryS2 molecule is inside∆Vcoll at time t is simply
obtained by∆Vcoll/V. Hence, the average of reaction rate distribution ofS1 andS2 is obtained as
Eq.B.3. This value is equal to the ratio of collision volume against the volume of the whole system.

(Vcoll
V

)
=
πr2

12v12∆t

V
= Average of probability thatS1 andS2 collides within minimal time∆t

(B.3)
According to Maxwell’s velocity distribution, average of relative ratev12 is (8kT/πm12)1/2, where

k is Boltzmann coefficient, T is the absolute temperature, andm12 is reduced mass obtained by
m1m2/(m1 +m2). Eq.B.3 assumes that there are only one molecule inV for eachS1 andS2. If each
population isX1 andX2, Eq.B.3 is rewritten as Eq.B.4.

(Vcoll
V

)
=

X1X2πr2
12v12dt

V
= Probability thatS1 andS2 collide within time (t, t + dt) (B.4)

It is difficult to deterministically obtain the number of reaction that occurred, but it is possible
to compute the probability of collision inV within limited time. Eq.B.4 exhibits stochastic Markov
process instead of deterministic reaction rate equation. Thus, it is not affected by past behavior, and
only current population of molecules and “probability of collision within time unit” are the only
factors that characterizes the system in thermal equilibrium.

B.3.2 Stochastic reaction rate constant

As described in the previous section, reaction rate of chemical reaction can be defined as “Probability
of collision within time unit= probability for occurrence of reaction within time unit”.

B. Derivation of Stochastic Biochemical Simulation Algorithm
B.3. Formulation of chemical reactions with stochastic models 80

s1

s2

Collision !

s2

s2

Fig. B.3: Assumed reaction

Assume that moleculesS1 andS2 react according to Eq.B.5.

R1 : S1 + S2→ 2S2 (B.5)

Eq. B.3 determinesc1, which is a constant that only depends on their physical characteristics and
system temperature.

c1dt = Probability thatS1 andS2 react

with ReactionR1 within minimal timestepdt (B.6)

Following equation as approved when the populations of molecules in volumeV areX1 andX2

for S1 andS2 at timet:

X1X2c1dt = Probability that ReactionR1 occur

insideV within minimal timestep (t, t + dt) (B.7)

Generalization of Eq.B.7 yields Eq.B.8. Assume that there areN types of molecules in volume
V, and population of moleculeSi is Xi . If M types of molecules cross-react with equationRµ inside
the volume, we can determineM types of constantcµ with Eq. B.8. The constant only depends on
physical properties of molecules and system temperature:

cµdt = Average of probability that molecules involving to

reactionRµ collides within minimal timestepdt (B.8)

The term “average” in Eq.B.8 means that a multiple ofc − µ and a combination number for
whole pair of molecules involved in the reactionRµ is equal to the probability that reactionRµ occurs
in volumeV during (t, t + dt).

B.3.3 Relationship between reaction rate constant and stochastic reaction rate con-
stant

Stochastic reaction rate constantcµ has a close connection with reaction rate constantkµ. Following
equation is formed for a reactionR1 in Eq.B.5.

k1 =
Vc1⟨X1X2⟩
⟨X1⟩⟨X2⟩

(⟨x⟩ is an average ofx) (B.9)

Right-hand side of Eq.B.9 can be interpreted as⟨X1X2⟩ = ⟨X1⟩⟨X2⟩. Hence,

k1 = Vc1 (B.10)

B. Derivation of Stochastic Biochemical Simulation Algorithm
B.3. Formulation of chemical reactions with stochastic models 81

If reactionR1 have three reactants, parameter of volume changes fromV to V2. Also, if reaction
R1 only has one reactant (such as cases of isomerization),V is equal to 1.

Next, we are going to consider a counterreaction ofR1 based on Eq.B.11.

R2 : 2S1→ S1 + S2 (B.11)

From Eq.B.5, constantc2 is determined (constantc2 is an average of probability that reactionR2

occurs when a certain pair ofS1 collides within minimal timestep). Here, combination number ofS1

molecules inV is X1(X1 − 1)/2!.

k2 =
Vc2⟨X1(X1−1)

2! ⟩
⟨X1⟩⟨X1⟩

=
Vc2

2
(B.12)

B.3.4 Calculating variability of biochemical system over time with stochastic method

Now we are going to track the status of biochemical system withN types of molecules cross-reacting
with M types of reactions proceeding over time. This can be obtained from Eq.B.6which gives basic
hypothesis.

(1) Master equation

Time course is obtained by setting up and solving a master equation for the biochemical system.
As previously mentioned, it is difficult to mathematically solve master equations, so we execute an
equivalent process as stated below.

Most important factor in master equation is a grand probability function. The function is defined
as Eq.B.13for biochemical systems:

P(X1,X2, · · · ,XN; t) ≡Population ofS1 is X1

and population ofS2 is X2· · ·，
and population ofSN is XN in volumeV at timet

(B.13)

Eq.B.13describes a stochastic state of a biochemical system at timet. For example, moment (or
k-power mean) ofP is given as Eq.B.14.

X(k)
i (t) ≡

∞∑
X1=0

. . .

∞∑
XN=0

Xk
i P(X1, · · · ,XN; t)

(i = 1, · · · ,N; k = 0,1,2, · · ·)
(B.14)

Mean of power ofk for P for Xi corresponds to “Average ofk-power forXi in volumeV at timet”.
The term “average” above indicates an average ofXi obtained by repeating vast amount of simulation
between time 0 tot with same initial valueXν and average reaction occurrence probability defined in
Eq.B.6.

PopulationXi differs per simulation, but the averagek-power mean converges toX(k)
i as simu-

lation is repeated. First and second moment (k = 1, 2) is especially important.X(k)
i whenk = 1

represents the average of population ofSi in V at time t, and the value whenk = 2 obtained by
Eq.B.15represents the variance of population mean.

X(k)
i (t) ≡

∞∑
X1=0

. . .

∞∑
XN=0

Xk
i P(X1, · · · ,XN; t)

(i = 1, · · · ,N; k = 0,1,2, · · ·)
(B.15)

B. Derivation of Stochastic Biochemical Simulation Algorithm
B.3. Formulation of chemical reactions with stochastic models 82

Xi(t) in Eq.B.1 that computes reaction rate with analytical model approximates the first moment,
but equality is not necessarily true.

Master equation is a function which obtained time variance with parametersP(X1, · · · ,XN; t).
There are 1+M ways to realize status (X1, · · · ,XN) at timet+dt, andP(X1, · · · ,XN; t) is a sum those
probabilities.P is obtained by sum and multiple of probabilities obtained by Eq.B.6.

P(X1, · · · ,XN; t + dt) = P(X1, · · · ,XN; t)

1− M∑
µ=1

aµdt

 + M∑
µ=1

Bµdt (B.16)

Now, let’s define a parameteraµ with

aµdt ≡ cµdt× {A combination populations that reacts inRµ
when the status of the model is (X1, · · · ,XX)}

= Probability thatRµ occurs at time (t, t + dt)

when the status of the model is (X1, · · · ,XN) at timet (B.17)

The first item of Eq.B.16 is a probability that the status of the model is (X1, · · · ,XN) at timet
and remains with the same state at timet + dt. Bµdt in the second item is a probability that the status
is (X1, · · · ,XN) at timet andRµ occurs at timet + dt.

The master equation derives from Eq.B.16.

∂

∂t
P(X1, · · · ,XN; t) =

M∑
µ=1

[
Bµ − aµ(X1, · · · ,XN; t)

]
(B.18)

Except for special cases, description of master equation is simple but is difficult to solve. In
addition, unlike reaction rate equations, it is difficult to analytically solve with computers due to
the quantity and characteristics of independent variables. Unless allRµs are simple monomolec-
ular equations, equations that derives moments include moments with higher degree, and it takes
infinitely long time to solve time change of moment for certainXi or ∆i(t). Thus, master equation
can rigorously and simply describe a model, but it is unsuitable to solve with analytical method.
Consequently, we use a method that yields equivalent solution with master equation for stochastic
simulation.

B.3.5 Reaction probability density function

This section describes a method to obtain variability of biochemical models over time using stochas-
tic method.

Assuming a system whose status is (X1, · · · ,XN) at timet, we need to clarify what reaction occurs
at certain time. Thus, we introduce a functionP(τ, µ) defined by Eq.B.19.

P(τ, µ) ≡ Probability thatRµ occurs within minimal timestep (t + τ, t + τ + dτ)

in volumeV when status of the model is (X1, · · · ,XN) (B.19)

FunctionP(τ, µ) is called a reaction probability density function.τ represents a time when next
reaction occurs, andµ is a type of the reaction.

Now we are going to obtain a functionh in reactionRµ, which is defined in Eq.B.20.

hµ ≡ Combination populations involved to reaction

Rµ when status of the model is(X1, · · · ,XN) (µ = 1, · · · ,M) (B.20)

B. Derivation of Stochastic Biochemical Simulation Algorithm
B.4. Direct Method 83

If the shape of reactionRµ is S1 + S2 → S, hµ = X1X2 is approved. In case when 2S1 → S,
hµ = 1

2X1(X1 − 1) is approved. In general,hµ is a complex function of variablesX1, · · · ,XN.
Let’s assumeP0(t), which is a probability that reactions do not occur within time (t, t + dt) when

status of the model is (X1, · · · ,XN). If aµ is a probability thatRµ occurs within time (t+ τ, t+ τ+dτ),
aµ is described with Eq.B.21.

aµdτ ≡ hµcµdτ (B.21)

Hence,P(τ, µ) is yielded as:
P(τ, µ)dτ = P0(τ) · aµdτ (B.22a)

Next,P0(τ) is yielded when
[
1−∑

ν aνdτ′
]

is a probability that reactions do not occur at timedτ′

when the status is (X1, · · · ,XN):

P0(τ′ + dτ′) = P0(τ′) ·
1− M∑

ν=1

aνdτ
′
 (B.22b)

P0(τ) = exp

− M∑
ν=1

aνdτ
′
 (B.22c)

Reaction probability density functionP(τ, µ) is obtained by assigning Eq.B.22cto Eq.B.22a.

P(τ, µ) =

aµ exp(−a0τ) if 0 6 τ < ∞ and µ = 1, · · · ,M
0 otherwise

(B.23)

B.4 Direct Method

This section describes the time and type of reactions that occurs in a biochemical system. The
method described here is called “Direct Method”, which is statistically-equivalent function with First
Reaction Method and Next Reaction Method.

The algorithm computesτ, µ by generating a random number that distributes based on reaction
probability density functionP(τ, µ) based on uniform random numbers.

τ =
1
a0

ln

(
1
r1

)
(B.24)

µ−1∑
ν=1

aν < r2a0 6
µ∑
ν=1

aν (µ : Integer) (B.25)

With the two equations above, we obtain integer random numbersµ that holdsP2(µ) = aµ/a0

and a random numberτ that follows a probability density functionP1(τ) = a0 exp(−a0τ) that is used
in P1(τ) · P2(µ) = P(τ, µ).

Simulation proceeds by following three steps (Fig.B.4)．

Step 0. Initialization

Memories forM types of reaction constantsc1, · · · , cM and initial populationX1, · · ·XN for N types
of molecules are allocated. Next,t and reaction countern are set to 0, and random number generator
are initialized.

Step 1.

Valuea1 = h1c1, · · · ,aM = hMcM is computed for allMs based on the population of molecules, and
the sum ofaν is assigned toa0.

B. Derivation of Stochastic Biochemical Simulation Algorithm
B.5. Advantages and limits of stochastic method 84

Step 0. Initialization
set X c
 t =0

i i

set Random generator

Step 1. calculate ax

set h X
set a = h c
set a = aΣ

i i i

0 i

Step 2. generate r & r
calculate &

1 2

τ µ
set r = random1
set r = random2

1

2
calculation τ
calculation µ

Step 3. Reactions

 set τ = t + τ
occur reaction µ X i

i

Fig. B.4: Computation flow of Direct Method

Step 2.

r1 andr2, two uniform random numbers between (0, 1), are generated, andτ andµ are computed.

Step 3.

t is incremented according to the value ofτ. Next, population of molecules affected by occurrence
of Rµ is adjusted. For example, ifRµ is a reaction in Eq.B.5, X2 is incremented by 1, andX1 is
decremented by 1. Then reaction countern is incremented before going back to Step 1.

Value of (X1, · · · ,XN, t) is read out within Step 1-3 or between arbitrary interval oft or n. Com-
putation ends whent or n reaches certain value, or whena0 becomes 0.

B.5 Advantages and limits of stochastic method

This stochastic simulation algorithm allows a rigorous simulation for biochemical system that is
defined based on a basic hypothesis (Eq.B.6). Also, this SSA does not simply repeat the computation
per minimal timestep∆t like numerical methods for conventional ordinary differential equations, but
calculates a time until the next reaction occurs. Thus, it is effective for models whose population
increases or decreases in a very short time interval. Another advantage is small memory space
requirement when this this simulation algorithm is executed on a computer system. For example,
in case of simulating a reaction withN types of molecules andM types of molecules, the required
memory space isN word for storing population ofN types of molecules,M words for storingcν, and
M + 1 words foraν. This is a large benefit for implementing SSA on an FPGA.

Another benefit is that simulation process and results can be easily read out. Thus, it is facile to

B. Derivation of Stochastic Biochemical Simulation Algorithm
B.6. Lotka system 85

obtain average, variance and correlation of molecules because their population is obtained numeri-
cally per simulation cycle.

Computation time of SSA is linear to the number of reactions. Thus, simulation time should
be controlled by specifying the number of reactions, types of molecules and their population. The
simulation can be conducted when the system is well-stirred, and simulation system size should be
enlarged if there is a bias of populations in simulation space. In order to obtain sure results, we
must use a “reliable” random number generator, and it is very difficult to testify its dependability.
Moreover, multiple simulation trials are required to obtain statistically certain simulation results.
Thus, there is a trade-off between reliability of the result (or number of simulation) and execution
time.

B.6 Lotka system

Gillespie picked up four types of biochemical systems to apply stochastic simulation algorithm: non-
invertible isomerization, Lotka system, Blusselator system and Oregonator system. Noninvertible
isomerization is a reaction that exhibits noninvertible mutation, and Gillespie testified the model by
stochastic simulation. Other three biochemical system is a more complex model. Noninvertible iso-
merization is a basic model that is a part of Lotka system. (Eq.B.26ccorresponds to the noninvertible
isomerization).

Lotka system has been studied since 1920 when Lotka found a following autocatalyzed reaction:

X̄1 + X2
c1−→ 2X2 (B.26a)

X2 + X3
c2−→ 2X3 (B.26b)

X3
c3−→ Z (B.26c)

This model is based on predator-prey model studied by Volterra. He described reactions above
with following ordinary differential equations, and studied a method to apply reaction rate equations
to the model.

dX1

dt
= c1X1X2 − c2X2X3 (B.27a)

dX3

dt
= c2X2X3 − c3X3 (B.27b)

Reaction Eq.B.26bdescribes a behavior that predatorsX3 consumes preyX2 to reproduce them-
selves. Reaction Eq.B.26ais a phenomenon thatX2 consumesX1 for their reproduction. Here,X1 is
unilaterally consumed and do not increase. Isomerization reaction is Eq.B.26c, which describes the
death ofX3.

It is obvious that steady state is kept when a conditiondX2/dt = dX3/dt = 0 are met.
Lotka system is one of a simple example of chemical reactions, but it can be easily understood

by applying it to actual phenomenon in our ecosystem. In this work, we added another condition that
the rate of the death ofX2 and population ofX1 do not change during the simulation in addition to
reaction Eq.B.26.

	Preface
	Acknowledgments
	Abbreviations and Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Objective and Contribution
	1.3 Thesis Organization

	2 Stochastic Biochemical Simulation
	2.1 Overview
	2.2 Systems Biology
	2.3 Stochastic Biochemical Simulation Algorithm
	2.4 Applications

	3 Systems using Field Programmable Gate Arrays
	3.1 Architecture of an FPGA
	3.2 General architecture of Xilinx Virtex-II FPGA
	3.3 Applications in molecular dynamics
	3.4 Related works : Stochastic Biochemical Simulator on an FPGA
	3.5 Our previous work

	4 Implementation of First Reaction Method on an FPGA
	4.1 Design concept to solve previous problems
	4.2 Acceleration concept for FRM-FPGA
	4.3 Implementation
	4.4 Evaluation
	4.5 Chapter summary

	5 Implementation of Next Reaction Method on an FPGA
	5.1 Design of NRM on an FPGA
	5.2 Implementation of NRM execution system
	5.3 Evaluation
	5.4 Review
	5.5 Chapter summary

	6 Conclusion
	6.1 Summary
	6.2 Outlook for the future

	Bibliography
	Publications
	A Implementation of the floating-point logarithmic function module
	A.1 Floating point format
	A.2 Logarithmic function module

	B Derivation of Stochastic Biochemical Simulation Algorithm
	B.1 Methods for biochemical simulation
	B.2 Solution for an analytical model
	B.3 Formulation of chemical reactions with stochastic models
	B.4 Direct Method
	B.5 Advantages and limits of stochastic method
	B.6 Lotka system

