

A Light-weight Content Distribution Scheme for Cooperative Caching in Telco-CDNs

<u>Takuma Nakajima</u>, Masato Yoshimi, Celimuge Wu, Tsutomu Yoshinaga The University of Electro-Communications

CANDAR'16

Summary

- <u>Proposal</u>: A light-weight scheme to utilize cache servers to reduce growing internet traffic
- Major Contributions:
 - Enhanced traffic reduction by distributing contents with a simple grouping scheme of cache servers and contents
 - Following a rapid change in access patterns by utilizing a hybrid caching scheme of LFU and LRU algorithms
- Evaluation:
 - Case study using a backbone network in Japan and YouTube access patterns
 - Comparison of traffic reduction and computational overhead with a sub-optimal result calculated by Genetic Algorithm

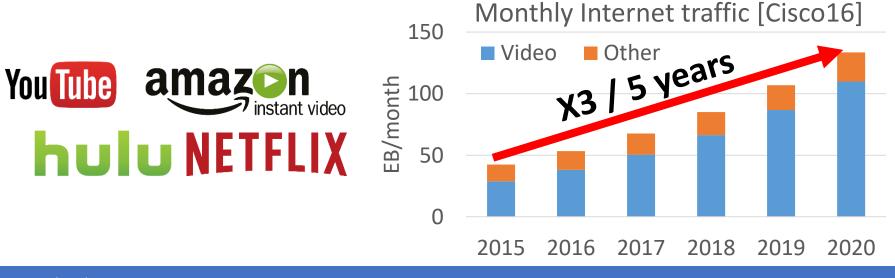
Outline

Introduction

- Rapid growth of video traffic
- Efficient utilization of cache servers

Proposal

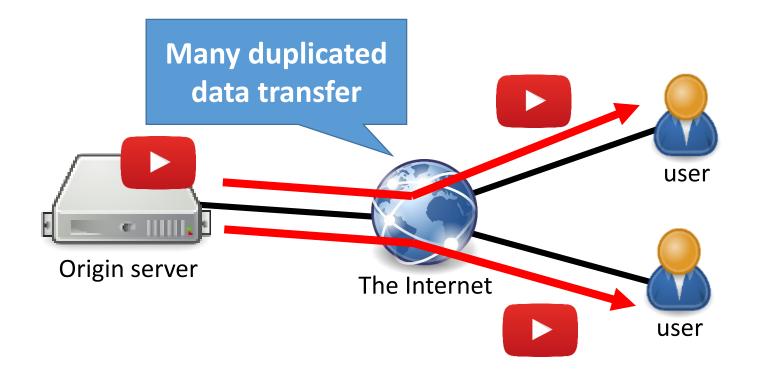
- Adjusting cache distribution by a simple scheme
- Following rapid change in access pattern by LFU/LRU hybrid caching


Evaluation

- Traffic reduction and computational overhead compared with a sub-optimal result
- Conclusion and Future work

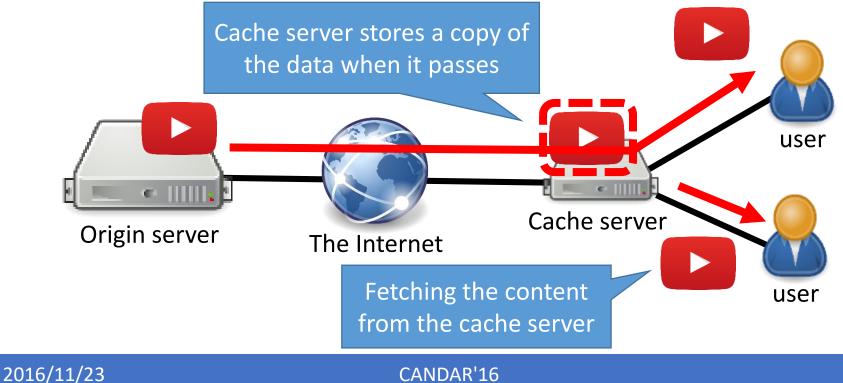
Rapid growth of video traffic

- <u>Video-on-Demand</u> (VoD) services will contribute more than <u>80% of internet traffic</u> in 2020 [Cisco16]
- Such enormous traffic will cause many congested links and <u>degrade network performances</u>
- <u>Efficient utilization of cache servers</u> is a key to reduce the internet traffic

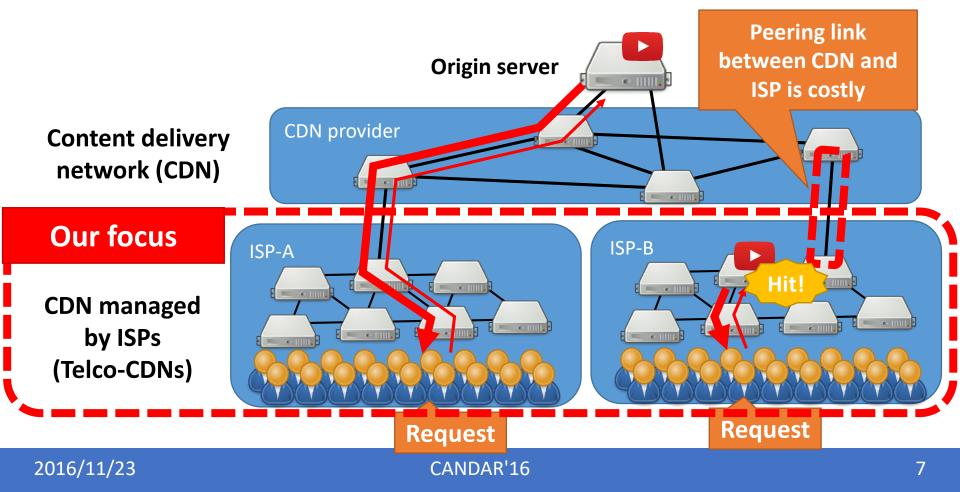


CANDAR'16

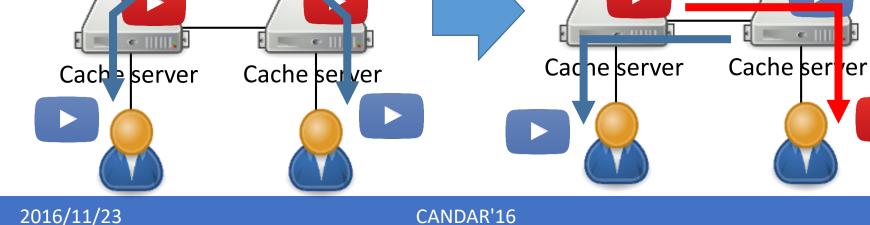
How internet traffic increases?


• The network <u>transfers the same data</u> to different users many times increasing the internet traffic

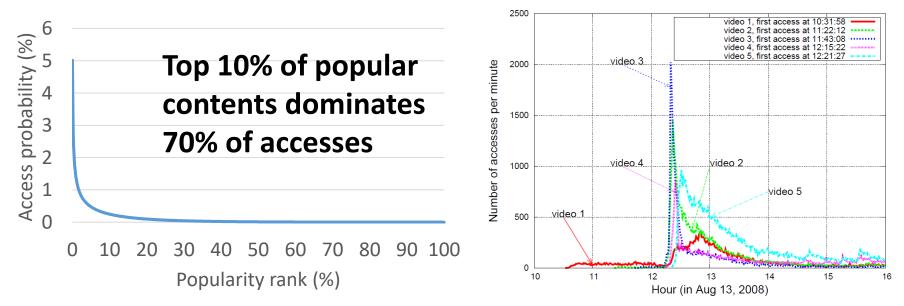
Traffic reduction by cache servers


- The cache server stores a copy of contents when they pass the server
- The cache server <u>responds the copy to users</u> to reduce the traffic from the cache server to the origin

Tiered cache networks

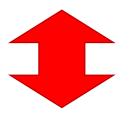

 It is better to <u>complete requests in an ISP network</u> to reduce traffic and communication costs

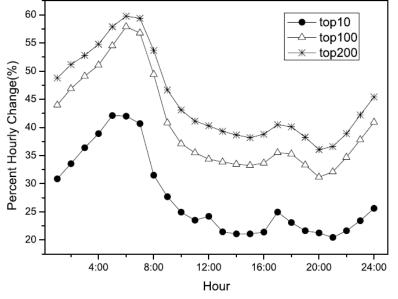
Cooperative caching



Increasing effective storage size by grouping several cache servers
 Origin server
 Video-A
 Video-B
 Video-A
 Video-B
 Video-A
 Video-B
 Video-A
 Video-B
 Video-A
 Video-B
 Video-A
 Video-B
 Video-A
 Video-A
 Video-B
 Video-A
 Video-B
 Video-A
 Video-B
 Video-A
 Video-A
 Video-B
 Video-A
 Video-B
 Video-A
 Video-A
 Video-A
 Video-A
 Video-B
 Video-A
 Video-A
 Video-A
 Video-A
 Video-B
 Video-A
 Video-A
 Video-A
 Video-B
 Video-A
 Video-A
 Video-A
 Video-A
 Video-A
 Video-B
 Video-A
 Video-A

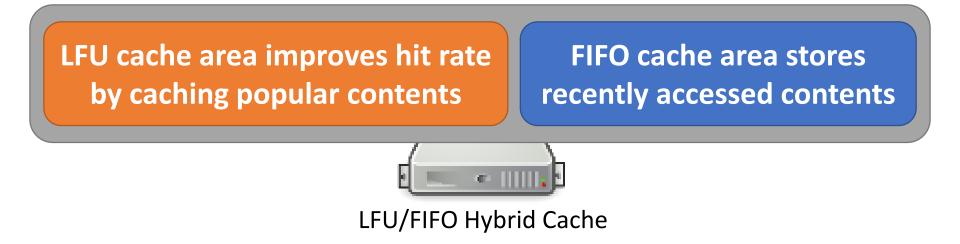
Characteristics of video accesses


- YO SHINA GA laboratory
- <u>Skewed accesses</u> [Cheng13]: Most accesses request limited popular contents
- <u>Rapid change in contents' popularities</u> [Yin09]: Access patterns often change widely due to news and viral communications in SNS


Finding optimal cache allocation

- Calculating <u>sub-optimal allocations of contents</u> to minimize the traffic with Genetic Algorithm (GA) [Li13]
 - It takes around 10 hours' calculation

- <u>Access patterns change</u>
 <u>20-60% every hour</u> [Yu06]
 - Long calculation time causes mismatches in the allocation



Hourly popularity change

LFU/FIFO hybrid caching [Zhou15]

- LFU/FIFO hybrid caching <u>improves cache hit rate</u> and <u>follow changes in access patterns</u>
 - LFU: Improving hit rate of each cache server
 - FIFO: Following change in access patterns
- It does not support cooperative caching

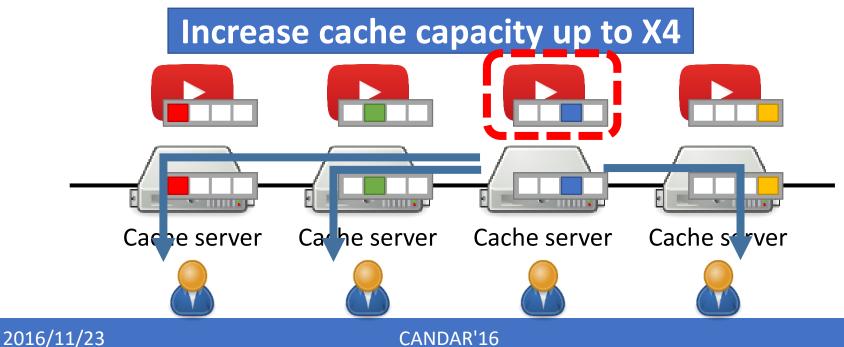
Outline



- Introduction
 - Rapid growth of video traffic
 - Efficient utilization of cache servers
- <u>Proposal</u>
 - Adjusting cache distribution by a simple scheme
 - Following rapid change in access pattern by LFU/LRU hybrid caching
- Evaluation
 - Traffic reduction and computational overhead compared with a sub-optimal result
- Conclusion and Future work

Efficient use of cache servers

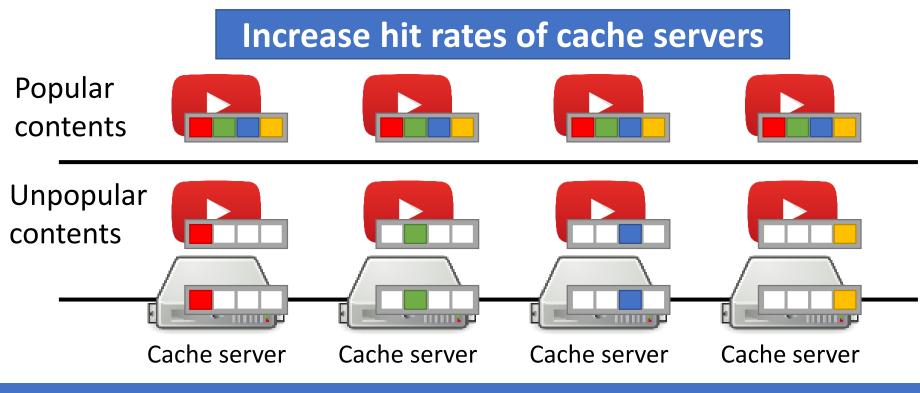
 A key factor of an efficient cache management is a combination use of <u>content distribution</u> and <u>duplication of popular contents</u>



Cache distribution: increase effective storage size Duplication of popular contents: increase hit rates of servers

Content distribution by color tags

- Increasing cache capacity by explicitly storing contents among cache servers
- Grouping and associating cache servers and contents with color tags with a specific color
 - Each cache server stores contents if the color matches

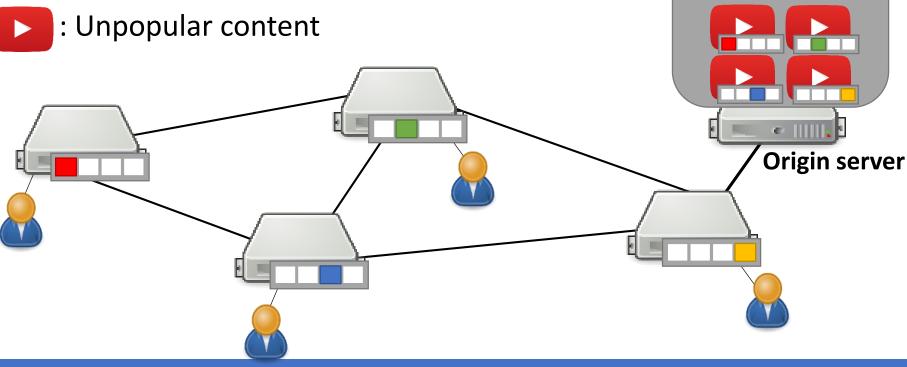

Content duplication by color tags

<u>Eliminating traffic</u> among cache servers

2016/11/23

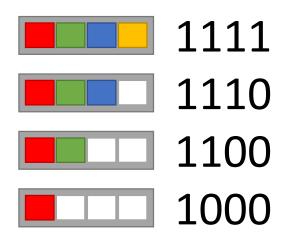
 <u>Duplicate popular contents</u> by <u>applying multiple</u> <u>colors</u> to them to increase hit rates

CANDAR'16


Example cache distribution

YO SHINA GA

Content library


- Contents are basically distributed
- Several popular contents are duplicated

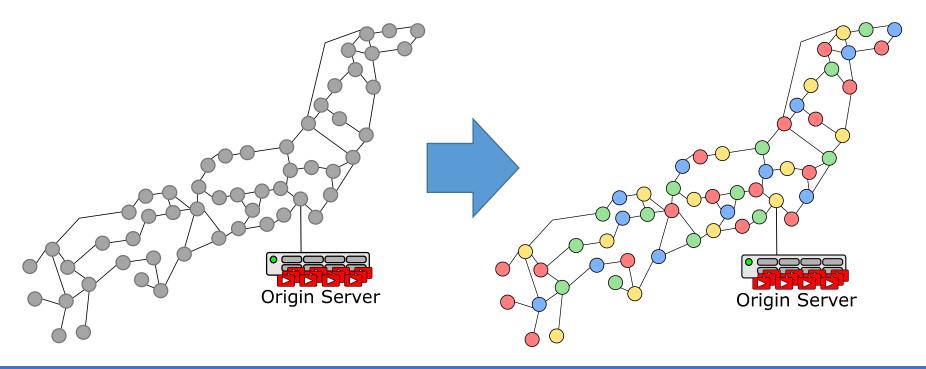
Preparing color tags

 A color tag is a set of bits, and each bit stands for a specific color

• Popular contents have tags with many 1-bit to increase hit rates

CANDAR'16

		1		
# of colors	R	G	В	Y
4	1	1	1	1
3	1	1	1	0
	1	1	0	1
	1	0	1	1
	0	1	1	1
	1	1	0	0
	1	0	1	0
2	1	0	0	1
2	0	1	1	0
	0	1	0	1
	0	0	1	1
	1	0	0	0
1	0	1	0	0
	0	0	1	0
	0	0	0	1
0	0	0	0	0

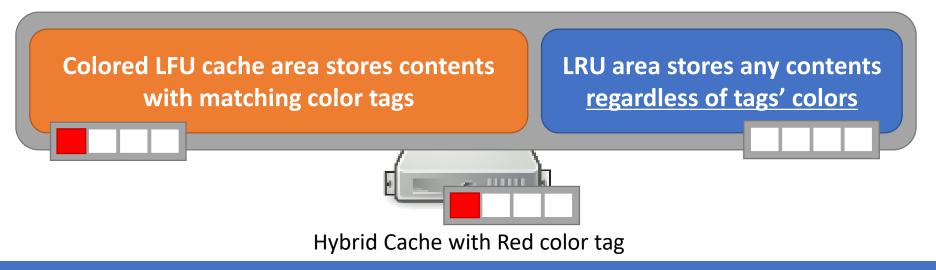

17

Coloration of cache networks

- Each cache server is preliminarily colorized with a specific color like the <u>four-color theorem</u>
 - For a case study, we colorized the network by preferring longer distances between the same colors

Coloration of contents

 <u>Sorting contents</u> by their popularities and <u>set color tags in a cyclic fashion</u>


# of	R	G	В	Y	Rank	Popularity class	Content name	Тад
colors					1	High	Video01.mp4	1111
4	1	1	1	1	2	High	Video02.mp4	1111
3	1	1	1	0	Ζ	півн	viue002.111p4	TTTT
	1	1	0	1			:	
	1	0	1	1	11	Mid-High	Video11.mp4	1110
	0	1	1	1	12	Mid-High	Video12.mp4	1101
2	1	1	0	0	4.0			
	1	0	1	0	13	Mid-High	Video13.mp4	1011
	1	0	0	1	14	Mid-High	Video14.mp4	0111
	0	1	1	0	15	Mid-High	Video15.mp4	1110
	0	1	0	1	13	witu-ringit	viue015.111p4	1110
	0	0	1	1			:	
1	1	0	0	0	130	Middle	Video130.mp4	1100
	0	1	0	0	131	Middle	Video131.mp4	1010
	0	0	1	0				
	0	0	0	1	132	Middle	Video132.mp4	1001
0	0	0	0	0	133	Middle	Video133.mp4	0110

2016/11/23

Following rapid access changes

- We adopt a <u>hybrid caching scheme</u> with colored LFU and no-color Modified LRU [Vleeschauwer11] areas
 - Modified LRU achieves better hit rate than LRU
- <u>Colored LFU area</u> stores contents with matching tags, while the <u>Modified LRU</u> area stores contents without matching tags

Outline

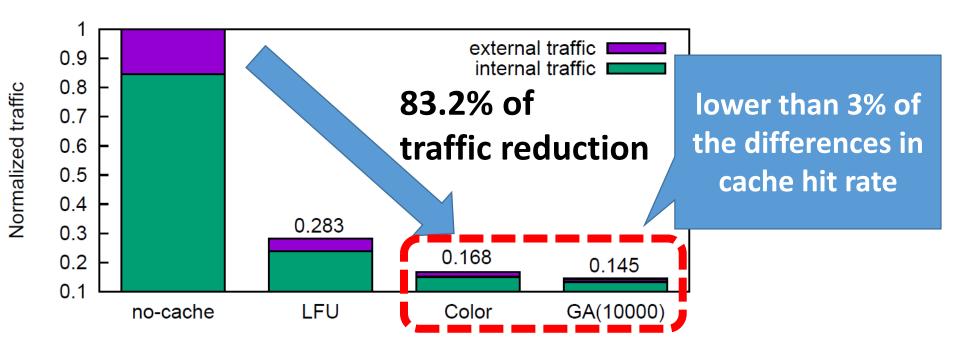
- Introduction
 - Rapid growth of video traffic
 - Efficient utilization of cache servers
- Proposal
 - Adjusting cache distribution by a simple scheme
 - Following rapid change in access pattern by LFU/LRU hybrid caching

Evaluation

 Traffic reduction and computational overhead compared with a sub-optimal result

<u>Conclusion and Future work</u>

Evaluation environment


- **NTT-like topology** in Japan [Arteta07]
- Origin server is connected to a cache server in Tokyo
- Skewed access pattern with <u>YouTube video traffic</u> [Cheng13]
- Each cache can store 10% of whole contents, which is almost <u>the same</u> <u>capacity as Netflix's cache servers</u>

Oriain Server

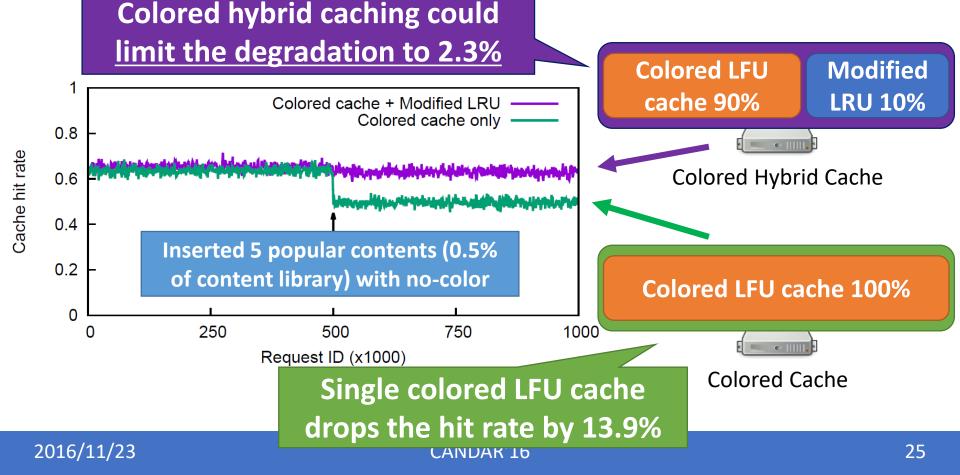
Traffic reduction

 Proposed color-cache scheme could <u>achieve close to</u> <u>the sub-optimal result</u> calculated by GA

Computational overhead

 Colorization overhead is limited to a few seconds since it only have to sort and update tags in a cyclic fashion

Topology	Nodes	Generation			
1010000		1000	3000	8000	10000
Ring	8	5m33s	16m01s	42m05s	52m33s
2D-mesh	25	34m44s	103m11s	274m40s	343m17s
NTT	55	42m08s	127m34s	350m38s	440m25s


Table: Computational time of GA

GA takes more than 7 hours until the conversion when using recent Core i7 CPU

Following dynamic accesses

 The <u>Colored hybrid caching</u> scheme could <u>maintain</u> <u>its hit rate</u> even when new contents are inserted

Conclusion and Future work

 <u>Proposal</u>: A light-weight scheme to manage cache servers by focusing on <u>content distribution</u> and <u>duplication</u> with a simple colorization scheme

Evaluation:

- Colored caching scheme could <u>achieve close to the sub-</u> <u>optimal result</u> with less than 3% of difference in hit rates
- Computational <u>overhead is limited to a few seconds</u>
- Colored hybrid caching scheme could also <u>follow the rapid</u> <u>change in access patterns</u> limiting the degradation to 2.3%

Future work

• More efficient ways to colorize cache servers and routing algorithms for further enhancing the traffic reduction